File size: 3,203 Bytes
943d5e8
 
 
 
 
88daa75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
943d5e8
 
 
88daa75
943d5e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88daa75
 
 
 
 
 
 
 
943d5e8
 
88daa75
 
943d5e8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from datasets import load_dataset

dataset = load_dataset('text', data_files={'train': ['NPI_2023_01_17-05.10.57.PM.csv'], 'test': 'NPI_2023_01_17-05.10.57.PM.csv'})

#1.6GB NPI file with MH therapy taxonomy provider codes (NUCC based) with human friendly replacement labels (e.g. Counselor rather than code)
#datasetNPIMH = load_dataset("awacke1/NPI-Providers-And-Facilities-By-Taxonomy", split="train")
#datasetNPIMH = load_dataset("awacke1/NPI-Providers-And-Facilities-By-Taxonomy", split='train[:1%]')
#print(datasetNPIMH.shape)

datasetNYC = load_dataset("gradio/NYC-Airbnb-Open-Data", split="train")
df = datasetNYC.to_pandas()

def MatchText(pddf, name):
    pd.set_option("display.max_rows", None)
    data = pddf
    swith=data.loc[data['text'].str.contains(name, case=False, na=False)]
    return swith

def getDatasetFind(findString):
    #finder = dataset.filter(lambda example: example['text'].find(findString))
    finder = dataset['train'].filter(lambda example: example['text'].find(findString))
    finder = finder = finder.to_pandas()
    g1=MatchText(finder, findString)
    
    return g1

def filter_map(min_price, max_price, boroughs):

    filtered_df = df[(df['neighbourhood_group'].isin(boroughs)) & (df['price'] > min_price) & (df['price'] < max_price)]
    names = filtered_df["name"].tolist()
    prices = filtered_df["price"].tolist()
    text_list = [(names[i], prices[i]) for i in range(0, len(names))]
    fig = go.Figure(go.Scattermapbox(
            customdata=text_list,
            lat=filtered_df['latitude'].tolist(),
            lon=filtered_df['longitude'].tolist(),
            mode='markers',
            marker=go.scattermapbox.Marker(
                size=6
            ),
            hoverinfo="text",
            hovertemplate='Name: %{customdata[0]}Price: $%{customdata[1]}'
        ))

    fig.update_layout(
        mapbox_style="open-street-map",
        hovermode='closest',
        mapbox=dict(
            bearing=0,
            center=go.layout.mapbox.Center(
                lat=40.67,
                lon=-73.90
            ),
            pitch=0,
            zoom=9
        ),
    )

    return fig

with gr.Blocks() as demo:
    with gr.Column():
        with gr.Row():
            min_price = gr.Number(value=250, label="Minimum Price")
            max_price = gr.Number(value=1000, label="Maximum Price")
        boroughs = gr.CheckboxGroup(choices=["Queens", "Brooklyn", "Manhattan", "Bronx", "Staten Island"], value=["Queens", "Brooklyn"], label="Select Boroughs:")
        btn = gr.Button(value="Update Filter")
        map = gr.Plot().style()
        
        with gr.Row():
            df20 = gr.Textbox(lines=4, default="", label="Find Text:")
            btn2 = gr.Button(value="Find")
            #df21 = gr.Textbox(lines=4, default="", label="Found:")
        with gr.Row():
            df4 = gr.Dataframe(wrap=True, max_rows=10000, overflow_row_behaviour= "paginate")

    demo.load(filter_map, [min_price, max_price, boroughs], map)
    btn.click(filter_map, [min_price, max_price, boroughs], map)
    
    btn2.click(getDatasetFind,df20,df4 )

demo.launch()