himanshu3103 commited on
Commit
505a33b
·
1 Parent(s): 6e5dbe3

deploying the model

Browse files
Files changed (1) hide show
  1. app.py +17 -4
app.py CHANGED
@@ -1,7 +1,20 @@
1
  import gradio as gr
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from fastai.vision.all import *
3
+ import skimage
4
 
5
+ learn = load_learner('characters.pkl')
 
6
 
7
+ labels = learn.dls.vocab
8
+ def predict(img):
9
+ img = PILImage.create(img)
10
+ pred,pred_idx,probs = learn.predict(img)
11
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
12
+
13
+ title = "Video Game Character Classifier"
14
+ # description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
15
+ #article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
16
+ examples = ['ellie.jpg']
17
+ interpretation='default'
18
+ enable_queue=True
19
+
20
+ gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(128, 128)),outputs=gr.outputs.Label(),title=title,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()