import gradio as gr | |
from fastai.vision.all import * | |
import skimage | |
learn = load_learner('characters.pkl') | |
labels = learn.dls.vocab | |
def predict(img): | |
pred,pred_idx,probs = learn.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
title = "Video Game Character Classifier" | |
# description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." | |
#article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>" | |
examples = ['ellie.jpg','arthur.jpg','kratos.jpg','ellielou.jpg'] | |
interpretation='default' | |
enable_queue=True | |
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(128, 128)),outputs=gr.outputs.Label(),title=title,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch() |