|
import streamlit as st |
|
import openai |
|
from openai import OpenAI |
|
import os, base64, cv2, glob |
|
from moviepy.editor import VideoFileClip |
|
from datetime import datetime |
|
import pytz |
|
from audio_recorder_streamlit import audio_recorder |
|
from PIL import Image |
|
|
|
openai.api_key, openai.organization = os.getenv('OPENAI_API_KEY'), os.getenv('OPENAI_ORG_ID') |
|
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) |
|
|
|
MODEL = "gpt-4o-2024-05-13" |
|
|
|
if 'messages' not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
def generate_filename(prompt, file_type): |
|
central = pytz.timezone('US/Central') |
|
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") |
|
safe_prompt = "".join(x for x in prompt.replace(" ", "_").replace("\n", "_") if x.isalnum() or x == "_")[:90] |
|
return f"{safe_date_time}_{safe_prompt}.{file_type}" |
|
|
|
def create_file(filename, prompt, response, should_save=True): |
|
if should_save and os.path.splitext(filename)[1] in ['.txt', '.htm', '.md']: |
|
with open(os.path.splitext(filename)[0] + ".md", 'w', encoding='utf-8') as file: |
|
file.write(response) |
|
|
|
def process_text(text_input): |
|
if text_input: |
|
st.session_state.messages.append({"role": "user", "content": text_input}) |
|
with st.chat_message("user"): |
|
st.markdown(text_input) |
|
completion = client.chat.completions.create(model=MODEL, messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=False) |
|
return_text = completion.choices[0].message.content |
|
with st.chat_message("assistant"): |
|
st.markdown(return_text) |
|
filename = generate_filename(text_input, "md") |
|
create_file(filename, text_input, return_text) |
|
st.session_state.messages.append({"role": "assistant", "content": return_text}) |
|
|
|
def process_text2(MODEL='gpt-4o-2024-05-13', text_input='What is 2+2 and what is an imaginary number'): |
|
if text_input: |
|
st.session_state.messages.append({"role": "user", "content": text_input}) |
|
completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages) |
|
return_text = completion.choices[0].message.content |
|
st.write("Assistant: " + return_text) |
|
filename = generate_filename(text_input, "md") |
|
create_file(filename, text_input, return_text, should_save=True) |
|
return return_text |
|
|
|
def save_image(image_input, filename): |
|
with open(filename, "wb") as f: |
|
f.write(image_input.getvalue()) |
|
return filename |
|
|
|
def process_image(image_input): |
|
if image_input: |
|
with st.chat_message("user"): |
|
st.markdown('Processing image: ' + image_input.name) |
|
base64_image = base64.b64encode(image_input.read()).decode("utf-8") |
|
st.session_state.messages.append({"role": "user", "content": [{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}]}) |
|
response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0.0) |
|
image_response = response.choices[0].message.content |
|
with st.chat_message("assistant"): |
|
st.markdown(image_response) |
|
filename_md, filename_img = generate_filename(image_input.name + '- ' + image_response, "md"), image_input.name |
|
create_file(filename_md, image_response, '', True) |
|
with open(filename_md, "w", encoding="utf-8") as f: |
|
f.write(image_response) |
|
save_image(image_input, filename_img) |
|
st.session_state.messages.append({"role": "assistant", "content": image_response}) |
|
return image_response |
|
|
|
def process_audio(audio_input): |
|
if audio_input: |
|
st.session_state.messages.append({"role": "user", "content": audio_input}) |
|
transcription = client.audio.transcriptions.create(model="whisper-1", file=audio_input) |
|
response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}]}], temperature=0) |
|
audio_response = response.choices[0].message.content |
|
with st.chat_message("assistant"): |
|
st.markdown(audio_response) |
|
filename = generate_filename(transcription.text, "md") |
|
create_file(filename, transcription.text, audio_response, should_save=True) |
|
st.session_state.messages.append({"role": "assistant", "content": audio_response}) |
|
|
|
def process_audio_and_video(video_input): |
|
if video_input is not None: |
|
video_path = save_video(video_input) |
|
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1) |
|
transcript = process_audio_for_video(video_input) |
|
st.session_state.messages.append({"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcript}"}]}) |
|
response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0) |
|
video_response = response.choices[0].message.content |
|
with st.chat_message("assistant"): |
|
st.markdown(video_response) |
|
filename = generate_filename(transcript, "md") |
|
create_file(filename, transcript, video_response, should_save=True) |
|
st.session_state.messages.append({"role": "assistant", "content": video_response}) |
|
|
|
def process_audio_for_video(video_input): |
|
if video_input: |
|
st.session_state.messages.append({"role": "user", "content": video_input}) |
|
transcription = client.audio.transcriptions.create(model="whisper-1", file=video_input) |
|
response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}]}], temperature=0) |
|
video_response = response.choices[0].message.content |
|
with st.chat_message("assistant"): |
|
st.markdown(video_response) |
|
filename = generate_filename(transcription.text, "md") |
|
create_file(filename, transcription.text, video_response, should_save=True) |
|
st.session_state.messages.append({"role": "assistant", "content": video_response}) |
|
return video_response |
|
|
|
def save_video(video_file): |
|
with open(video_file.name, "wb") as f: |
|
f.write(video_file.getbuffer()) |
|
return video_file.name |
|
|
|
def process_video(video_path, seconds_per_frame=2): |
|
base64Frames, base_video_path = [], os.path.splitext(video_path)[0] |
|
video, total_frames, fps = cv2.VideoCapture(video_path), int(cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FRAME_COUNT)), cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FPS) |
|
curr_frame, frames_to_skip = 0, int(fps * seconds_per_frame) |
|
while curr_frame < total_frames - 1: |
|
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) |
|
success, frame = video.read() |
|
if not success: break |
|
_, buffer = cv2.imencode(".jpg", frame) |
|
base64Frames.append(base64.b64encode(buffer).decode("utf-8")) |
|
curr_frame += frames_to_skip |
|
video.release() |
|
audio_path = f"{base_video_path}.mp3" |
|
clip = VideoFileClip(video_path) |
|
clip.audio.write_audiofile(audio_path, bitrate="32k") |
|
clip.audio.close() |
|
clip.close() |
|
print(f"Extracted {len(base64Frames)} frames") |
|
print(f"Extracted audio to {audio_path}") |
|
return base64Frames, audio_path |
|
|
|
def save_and_play_audio(audio_recorder): |
|
audio_bytes = audio_recorder(key='audio_recorder') |
|
if audio_bytes: |
|
filename = generate_filename("Recording", "wav") |
|
with open(filename, 'wb') as f: |
|
f.write(audio_bytes) |
|
st.audio(audio_bytes, format="audio/wav") |
|
return filename |
|
return None |
|
|
|
@st.cache_resource |
|
def display_videos_and_links(num_columns): |
|
video_files = [f for f in os.listdir('.') if f.endswith('.mp4')] |
|
if not video_files: |
|
st.write("No MP4 videos found in the current directory.") |
|
return |
|
video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0])) |
|
cols = st.columns(num_columns) |
|
col_index = 0 |
|
for video_file in video_files_sorted: |
|
with cols[col_index % num_columns]: |
|
k = video_file.split('.')[0] |
|
st.video(video_file, format='video/mp4', start_time=0) |
|
display_glossary_entity(k) |
|
col_index += 1 |
|
|
|
@st.cache_resource |
|
def display_images_and_wikipedia_summaries(num_columns=4): |
|
image_files = [f for f in os.listdir('.') if f.endswith('.png')] |
|
if not image_files: |
|
st.write("No PNG images found in the current directory.") |
|
return |
|
image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0])) |
|
cols = st.columns(num_columns) |
|
col_index = 0 |
|
for image_file in image_files_sorted: |
|
with cols[col_index % num_columns]: |
|
image = Image.open(image_file) |
|
st.image(image, caption=image_file, use_column_width=True) |
|
k = image_file.split('.')[0] |
|
display_glossary_entity(k) |
|
col_index += 1 |
|
|
|
def main(): |
|
st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video") |
|
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video")) |
|
if option == "Text": |
|
text_input = st.chat_input("Enter your text:") |
|
if text_input: |
|
process_text(text_input) |
|
elif option == "Image": |
|
image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) |
|
process_image(image_input) |
|
elif option == "Audio": |
|
audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"]) |
|
process_audio(audio_input) |
|
elif option == "Video": |
|
video_input = st.file_uploader("Upload a video file", type=["mp4"]) |
|
process_audio_and_video(video_input) |
|
|
|
all_files = sorted(glob.glob("*.md"), key=lambda x: (os.path.splitext(x)[1], x), reverse=True) |
|
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] |
|
st.sidebar.title("File Gallery") |
|
for file in all_files: |
|
with st.sidebar.expander(file), open(file, "r", encoding="utf-8") as f: |
|
st.code(f.read(), language="markdown") |
|
|
|
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"): |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
with st.chat_message("assistant"): |
|
completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True) |
|
response = process_text2(text_input=prompt) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
|
|
filename = save_and_play_audio(audio_recorder) |
|
if filename is not None: |
|
transcript = transcribe_canary(filename) |
|
result = search_arxiv(transcript) |
|
st.session_state.messages.append({"role": "user", "content": transcript}) |
|
with st.chat_message("user"): |
|
st.markdown(transcript) |
|
with st.chat_message("assistant"): |
|
completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True) |
|
response = process_text2(text_input=prompt) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
|
|
|
|
num_columns_images=st.slider(key="num_columns_images", label="Choose Number of Image Columns", min_value=1, max_value=15, value=5) |
|
display_images_and_wikipedia_summaries(num_columns_images) |
|
|
|
num_columns_video=st.slider(key="num_columns_video", label="Choose Number of Video Columns", min_value=1, max_value=15, value=5) |
|
display_videos_and_links(num_columns_video) |
|
|
|
if __name__ == "__main__": |
|
main() |