awacke1's picture
Update app.py
eeebcf5 verified
raw
history blame
1.48 kB
import os
import gradio as gr
import torch
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from PIL import Image # PIL should be imported separately for image handling
EXAMPLES_DIR = 'examples'
DEFAULT_PROMPT = "<image>"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the BLIP2 model using the AutoModel with trust_remote_code=True
model = Blip2ForConditionalGeneration.from_pretrained('Salesforce/blip2-flan-t5-xl', device_map="auto", torch_dtype=torch.float16)
model.to(device)
model.eval()
# Initialize processor
processor = Blip2Processor.from_pretrained('Salesforce/blip2-flan-t5-xl')
# Setup some example images
examples = []
if os.path.isdir(EXAMPLES_DIR):
for file in os.listdir(EXAMPLES_DIR):
path = EXAMPLES_DIR + "/" + file
examples.append([path, DEFAULT_PROMPT])
def predict_caption(image, prompt):
assert isinstance(prompt, str)
# Convert the PIL image to the format expected by the processor
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device)
# Generate the caption
generated_ids = model.generate(**inputs, max_length=50)
caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return caption
iface = gr.Interface(
fn=predict_caption,
inputs=[gr.Image(type="pil"), gr.Textbox(value=DEFAULT_PROMPT, label="Prompt")],
examples=examples,
outputs="text"
)
iface.launch(debug=True)