awacke1's picture
Update app.py
b027e97 verified
raw
history blame
23.1 kB
import streamlit as st
import os
import glob
import re
import base64
import pytz
import time
from urllib.parse import quote
from gradio_client import Client
from datetime import datetime
# ๐ŸŒณ๐Ÿค– AIKnowledgeTreeBuilder - Because every app needs a good costume!
Site_Name = 'AI Knowledge Tree Builder ๐Ÿ“ˆ๐ŸŒฟ Grow Smarter with Every Click'
title = "๐ŸŒณโœจAI Knowledge Tree Builder๐Ÿ› ๏ธ๐Ÿค“"
helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
icons = '๐ŸŒณโœจ๐Ÿ› ๏ธ๐Ÿค“'
st.set_page_config(
page_title=title,
page_icon=icons,
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': helpURL,
'Report a bug': bugURL,
'About': title
}
)
# Initialize session state variables
if 'selected_file' not in st.session_state:
st.session_state.selected_file = None
if 'view_mode' not in st.session_state:
st.session_state.view_mode = 'view'
if 'files' not in st.session_state:
st.session_state.files = []
AITopicsToInnovate1="""
1. Major AI Industry Players ๐ŸŒ
1. Research Leaders ๐ŸŽฏ
- OpenAI: GPT-4 DALL-E Foundation Models ๐Ÿ”ต
- Google: PaLM Gemini LLMs ๐ŸŸฆ
- Anthropic: Claude Constitutional AI โšก
- Meta: LLaMA Open Source LLMs ๐Ÿ‘ค
- xAI: Grok Conversational AI ๐Ÿค–
2. Technical AI Development ๐Ÿ› ๏ธ
1. Architecture Advances ๐Ÿ’ซ
- Transformer Models Attention Mechanisms ๐Ÿง 
- Mixture of Experts MoE Architecture ๐ŸŽช
- Sparse Neural Networks ๐Ÿ•ธ๏ธ
- Multi-modal LLM Systems ๐ŸŒˆ
- Flash Attention Optimization โš”๏ธ
2. Training Methodologies ๐Ÿ“š
- LLM Supervised Fine-tuning ๐Ÿ‘จโ€๐Ÿซ
- RLHF Reward Models ๐Ÿค
- Constitutional AI Training ๐Ÿ“œ
- RLAIF Feedback Models ๐Ÿ”„
- Synthetic Data LLM Training ๐ŸŽฒ
- Chain of Thought Prompting ๐Ÿงฉ
- Tree of Thoughts Reasoning ๐ŸŒณ
3. Post-Training Implementation ๐Ÿ”ง
- Neural Network Distillation ๐Ÿงช
- LLM Quantization Methods ๐Ÿ“Š
- Neural Network Pruning โœ‚๏ธ
- Knowledge Distillation Transfer ๐Ÿ“–
- Few-shot LLM Learning ๐ŸŽฏ
3. Mechanistic Interpretability ๐Ÿ”ฌ
1. Core Concepts ๐Ÿ’ก
- Neural Network Growth Analysis ๐ŸŒฑ
- LLM Architecture Analysis ๐Ÿ—๏ธ
- Training Loss Optimization ๐ŸŽจ
- Neural Network Analogies ๐Ÿงฌ
2. Technical Features ๐Ÿ“
- LLM Linear Representations โžก๏ธ
- Neural Vector Arithmetic ๐Ÿ”ข
- Neural Activation Patterns ๐ŸŒŠ
- LLM Feature Detection ๐Ÿ”
- Neural Sparse Autoencoders ๐ŸŽญ
3. Network Analysis ๐Ÿ•ต๏ธ
- LLM Induction Heads ๐Ÿ‘€
- Transformer Attention Analysis ๐ŸŽช
- Neural Circuit Analysis ๐Ÿ”Œ
- LLM Feature Visualization ๐Ÿ“ˆ
- Neural Concept Directions ๐ŸŽณ
4. Future AI Developments ๐Ÿš€
1. AGI Timeline โฐ
- AGI Capability Projections ๐Ÿ“…
- Neural Hardware Scaling ๐Ÿ’พ
- LLM Training Data Limits ๐Ÿ“‰
- AI Compute Resources ๐Ÿ—บ๏ธ
2. Integration Fields ๐ŸŽก
- AI Biology Integration ๐Ÿ”ฎ
- AI Drug Discovery Systems ๐Ÿ’Š
- AI Clinical Trial Analysis ๐Ÿฅ
- AI Code Generation ๐Ÿคน
- AI Scientific Discovery ๐Ÿงฎ
5. Industry Best Practices ๐Ÿ’Ž
1. AI Team Building ๐Ÿข
- AI Talent Development ๐Ÿ‘ฅ
- AI Research Alignment ๐ŸŽช
- AI Team Scaling ๐Ÿ“Š
- AI Research Culture ๐ŸŒŸ
2. AI Research Qualities ๐ŸŽ“
- AI Research Methodology ๐Ÿงญ
- AI Experimentation Protocols ๐Ÿ—๏ธ
- AI Innovation Thinking ๐Ÿ’ซ
- AI Testing Framework โš–๏ธ
3. AI Safety Standards ๐Ÿ›ก๏ธ
- LLM Behavioral Specifications ๐Ÿ“‹
- AI Safety Guidelines ๐ŸŽฎ
- AI Ethics Framework โ›‘๏ธ
- AI Industry Standards ๐Ÿคฒ
6. Emerging Research Areas ๐Ÿ”ฎ
1. Technical Focus ๐ŸŽฏ
- LLM Long Context Learning โณ
- LLM Multi-agent Interaction ๐Ÿ‘พ
- AI Evaluation Metrics ๐Ÿ“Œ
- Neural Interpretability Methods ๐Ÿ”ญ
2. AI Applications ๐Ÿ’ผ
- AI Automated Research ๐Ÿงซ
- AI Code Synthesis โŒจ๏ธ
- AI Biological Modeling ๐Ÿงฏ
- AI Medical Diagnostics ๐Ÿ’‰
7. Model Intelligence ๐Ÿงฟ
1. LLM System Development ๐ŸŽช
- LLM Prompt Engineering ๐Ÿ“
- LLM Response Generation โ™Ÿ๏ธ
- LLM Behavioral Training ๐ŸŽน
- LLM Personality Development ๐ŸŽช
2. LLM User Interaction ๐ŸŽญ
- LLM Autonomy Alignment ๐ŸŽช
- LLM Safety Boundaries ๐Ÿ”’
- LLM Communication Patterns ๐Ÿ—ฃ๏ธ
- LLM Performance Tuning ๐ŸŽข
"""
Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds = """
# Active Multiplayer Games 2024 ๐ŸŽฎ
## 1 Traditional MMORPGs ๐Ÿ—ก๏ธ
### 1.1 Major MMORPGs ๐Ÿฐ
- Final Fantasy XIV Dawntrail 2024 โš”๏ธ
- Advanced Job System Rework ๐ŸŽญ
- Cross Platform Integration ๐ŸŽช
- New Housing Districts ๐Ÿ˜๏ธ
- World of Warcraft 2024 Season ๐Ÿฒ
- Dragon Combat System ๐Ÿฆ‹
- Cross Faction Features โšœ๏ธ
- Mythic Plus Seasons ๐Ÿ†
- Elder Scrolls Online Gold Road ๐Ÿ—๏ธ
- Dynamic Event System ๐ŸŒŸ
- Housing Construction ๐Ÿ›๏ธ
- Champion System 2.0 ๐Ÿ“Š
- Lost Ark Western T4 Update โšก
- Legion Raid Content ๐Ÿ‘พ
- Island Adventure System ๐Ÿ๏ธ
- Class Balance Rework ๐Ÿ”ฐ
- Black Desert Online Remaster ๐ŸŽช
- Combat System Update ๐ŸŽฏ
- Node Empire System ๐Ÿน
- Life Skill Evolution ๐ŸŒณ
### 1.2 Emerging MMORPGs ๐ŸŒ 
- Throne and Liberty Launch ๐Ÿ‘‘
- Weather Combat System ๐ŸŒฆ๏ธ
- Territory Wars ๐Ÿ—บ๏ธ
- Transformation System ๐Ÿ‰
- Pax Dei Medieval MMO โš”๏ธ
- City Management ๐Ÿฐ
- Faith Based Magic โœจ
- Global Trading ๐Ÿ’Ž
- Blue Protocol Western Release ๐ŸŒŒ
- Action Combat Design ๐ŸŽญ
- Class Change System โšก
- Dungeon Scaling ๐Ÿ—ผ
## 2 Survival MMOs ๐Ÿน
### 2.1 Established Survival ๐Ÿ›ก๏ธ
- Rust 2024 Updates ๐Ÿฆพ
- Electricity Programming ๐Ÿ’ก
- Vehicle System Update ๐Ÿš—
- Automated Defenses โšก
- ARK Survival Ascended ๐Ÿฆ–
- Cross ARK System ๐ŸŒ
- Creature Breeding 2.0 ๐Ÿฅš
- Base Defense Network ๐Ÿฐ
- DayZ 2024 Content ๐ŸงŸ
- Medical System Update ๐Ÿ’‰
- Disease Mechanics ๐Ÿฆ 
- Base Building 2.0 ๐Ÿ—๏ธ
- 7 Days to Die Alpha 22 ๐Ÿš๏ธ
- Physics Engine Update ๐Ÿ’ฅ
- AI Pathfinding System ๐Ÿง 
- Vehicle Customization ๐Ÿš™
### 2.2 New Survival MMOs ๐Ÿ†•
- Once Human Launch ๐Ÿงฌ
- Mutation System ๐Ÿงช
- Base Building Tech ๐Ÿญ
- Weather Impact System ๐ŸŒช๏ธ
- Nightingale Release ๐ŸŒ™
- Portal Realm System ๐ŸŒŒ
- Victorian Crafting ๐ŸŽฉ
- Fae World Design ๐Ÿงš
## 3 Hybrid MMOs ๐ŸŽฏ
### 3.1 Looter Shooters ๐Ÿ”ซ
- Destiny 2 2024 Season ๐Ÿ›ธ
- Build System 3.0 ๐Ÿ› ๏ธ
- Raid Mechanics โญ
- Season Structure ๐Ÿ“ˆ
- The Division 2 Year 6 ๐Ÿ™๏ธ
- Loadout Expansion ๐ŸŽ’
- Dark Zone Update ๐ŸŒƒ
- Manhunt System ๐ŸŽฏ
- Warframe 2024 Update ๐Ÿค–
- Movement Tech 2.0 ๐Ÿƒ
- Mod System Rework โš™๏ธ
- Open World Expansion ๐ŸŒ…
### 3.2 Action RPG MMOs ๐Ÿ’ซ
- Path of Exile 2 Beta ๐Ÿ’Ž
- Gem System Rework ๐Ÿ’ซ
- New Skill Tree ๐ŸŒฒ
- League Content ๐Ÿ†
- Diablo 4 Season Structure ๐Ÿ˜ˆ
- Season Journey System ๐ŸŽญ
- World Boss Events ๐Ÿฒ
- PvP Territories ๐Ÿ—ก๏ธ
## 4 Simulation MMOs ๐ŸŒ
### 4.1 Space Simulation ๐Ÿš€
- EVE Online 2024 ๐Ÿ›ธ
- Corporation Warfare ๐Ÿดโ€โ˜ ๏ธ
- Market System Update ๐Ÿ“Š
- Fleet Operations ๐Ÿšข
- Elite Dangerous Update ๐ŸŒŒ
- Ground Combat System ๐Ÿ‘จโ€๐Ÿš€
- Fleet Carrier Content โญ
- Planet Exploration ๐Ÿช
- Star Citizen Alpha ๐Ÿ›ธ
- Persistent Universe ๐ŸŒ
- Ship Combat Update โš”๏ธ
- Trading System 2.0 ๐Ÿ’ฐ
### 4.2 World Simulation ๐ŸŒŽ
- New World Eternal ๐Ÿ—บ๏ธ
- Territory System ๐Ÿฐ
- Crafting Update ๐Ÿ› ๏ธ
- War System 2.0 โš”๏ธ
- Albion Online 2024 ๐Ÿน
- Guild Warfare Update โš”๏ธ
- Economy System 2.0 ๐Ÿ’ฐ
- Territory Control ๐Ÿฐ
## 5 Unique Multiplayer Games ๐ŸŽฒ
### 5.1 Adventure Multiplayer ๐Ÿ—บ๏ธ
- Sea of Thieves 2024 โ›ต
- Ship Combat Physics ๐ŸŒŠ
- Crew Management ๐Ÿดโ€โ˜ ๏ธ
- World Events ๐ŸŽช
- Valheim Updates โšก
- Building System 2.0 ๐Ÿ—๏ธ
- Boss Progression ๐Ÿ‘น
- Exploration Update ๐Ÿ—บ๏ธ
### 5.2 Combat Focused ๐Ÿ—ก๏ธ
- Mordhau 2024 โš”๏ธ
- Combat Physics Update ๐Ÿคบ
- Map System Rework ๐Ÿฐ
- Tournament System ๐Ÿ†
- For Honor Year 8 ๐Ÿ›ก๏ธ
- Faction War Update โš”๏ธ
- Hero Rework System ๐ŸŽญ
- Seasonal Content ๐ŸŒŸ
## 6 Upcoming 2024 Games ๐Ÿ”ฎ
### 6.1 Launching Soon ๐Ÿ“…
- Gray Zone Warfare ๐ŸŽ–๏ธ
- Tactical Systems ๐ŸŽฏ
- Base Operations ๐Ÿข
- Territory Control ๐Ÿ—บ๏ธ
- Fractured Online ๐ŸŒŸ
- City Building ๐Ÿ—๏ธ
- Knowledge System ๐Ÿ“š
- Player Economy ๐Ÿ’ฐ
### 6.2 In Development ๐Ÿ› ๏ธ
- Ashes of Creation ๐Ÿฐ
- Node System ๐ŸŒฑ
- Castle Siege โš”๏ธ
- Caravan System ๐Ÿช
- Pantheon Rise of the Fallen ๐ŸŒ…
- Climate System ๐ŸŒฆ๏ธ
- Group Content Focus ๐Ÿ‘ฅ
- Perception System ๐Ÿ‘๏ธ
"""
def get_display_name(filename):
"""Extract text from parentheses or return filename as is."""
match = re.search(r'\((.*?)\)', filename)
if match:
return match.group(1)
return filename
def get_time_display(filename):
"""Extract just the time portion from the filename."""
time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename)
if time_match:
return time_match.group(1)
return filename
def sanitize_filename(text):
"""Create a safe filename from text while preserving spaces."""
# First replace unsafe characters with spaces
safe_text = re.sub(r'[^\w\s-]', ' ', text)
# Remove any multiple spaces
safe_text = re.sub(r'\s+', ' ', safe_text)
# Trim leading/trailing spaces
safe_text = safe_text.strip()
return safe_text[:50] # Limit length to 50 chars
def generate_timestamp_filename(query):
"""Generate filename with format: 1103AM 11032024 (Query).md"""
# Get current time in Central timezone
central = pytz.timezone('US/Central')
current_time = datetime.now(central)
# Format the timestamp parts
time_str = current_time.strftime("%I%M%p") # 1103AM format
date_str = current_time.strftime("%m%d%Y") # 11032024 format
# Clean up the query for filename - now preserving spaces
safe_query = sanitize_filename(query)
# Construct filename: "1103AM 11032024 (Input with spaces).md"
filename = f"{time_str} {date_str} ({safe_query}).md"
return filename
def delete_file(file_path):
"""Delete a file and return success status."""
try:
os.remove(file_path)
return True
except Exception as e:
st.error(f"Error deleting file: {e}")
return False
def save_ai_interaction(query, ai_result, is_rerun=False):
"""Save AI interaction to a markdown file with new filename format."""
filename = generate_timestamp_filename(query)
# Format the content differently for rerun vs normal query
if is_rerun:
content = f"""# Rerun Query
Original file content used for rerun:
{query}
# AI Response (Fun Version)
{ai_result}
"""
else:
content = f"""# Query: {query}
## AI Response
{ai_result}
"""
# Save to file
try:
with open(filename, 'w', encoding='utf-8') as f:
f.write(content)
return filename
except Exception as e:
st.error(f"Error saving file: {e}")
return None
def get_file_download_link(file_path):
"""Generate a base64 download link for a file."""
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
b64 = base64.b64encode(content.encode()).decode()
filename = os.path.basename(file_path)
return f'<a href="data:text/markdown;base64,{b64}" download="{filename}">{get_display_name(filename)}</a>'
except Exception as e:
st.error(f"Error creating download link: {e}")
return None
def extract_terms(markdown_text):
"""Parse markdown text and extract terms."""
lines = markdown_text.strip().split('\n')
terms = []
for line in lines:
line = re.sub(r'^[#*\->\d\.\s]+', '', line).strip()
if line:
terms.append(line)
return terms
def display_terms_with_links(terms):
"""Display terms with various search links."""
search_urls = {
"๐Ÿš€๐ŸŒŒArXiv": lambda k: f"/?q={quote(k)}",
"๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}",
"โ–ถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"๐Ÿฆ": lambda k: f"https://twitter.com/search?q={quote(k)}",
}
for term in terms:
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
st.markdown(f"- **{term}** {links_md}", unsafe_allow_html=True)
def search_arxiv(query):
st.write("Performing AI Lookup...")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
result1 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result")
st.markdown(result1)
result2 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mistral-7B-Instruct-v0.2 Result")
st.markdown(result2)
combined_result = f"{result1}\n\n{result2}"
#return combined_result
return responseall
def perform_ai_lookup(query):
start_time = time.strftime("%Y-%m-%d %H:%M:%S")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
response1 = client.predict(
query,
20,
"Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)
Question = '### ๐Ÿ”Ž ' + query + '\r\n' # Format for markdown display with links
References = response1[0]
ReferenceLinks = extract_urls(References)
RunSecondQuery = True
results=''
if RunSecondQuery:
# Search 2 - Retrieve the Summary with Papers Context and Original Query
response2 = client.predict(
query,
"mistralai/Mixtral-8x7B-Instruct-v0.1",
True,
api_name="/ask_llm"
)
if len(response2) > 10:
Answer = response2
SpeechSynthesis(Answer)
# Restructure results to follow format of Question, Answer, References, ReferenceLinks
results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + ReferenceLinks
st.markdown(results)
st.write('๐Ÿ”Run of Multi-Agent System Paper Summary Spec is Complete')
end_time = time.strftime("%Y-%m-%d %H:%M:%S")
start_timestamp = time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M:%S"))
end_timestamp = time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M:%S"))
elapsed_seconds = end_timestamp - start_timestamp
st.write(f"Start time: {start_time}")
st.write(f"Finish time: {end_time}")
st.write(f"Elapsed time: {elapsed_seconds:.2f} seconds")
filename = generate_filename(query, "md")
create_file(filename, query, results, should_save)
return results
def display_file_content(file_path):
"""Display file content with editing capabilities."""
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
if st.session_state.view_mode == 'view':
# Display as markdown when viewing
st.markdown(content)
else:
# Edit functionality
edited_content = st.text_area(
"Edit content",
content,
height=400,
key=f"edit_{os.path.basename(file_path)}"
)
if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"):
try:
with open(file_path, 'w', encoding='utf-8') as f:
f.write(edited_content)
st.success(f"Successfully saved changes to {file_path}")
except Exception as e:
st.error(f"Error saving changes: {e}")
except Exception as e:
st.error(f"Error reading file: {e}")
def file_management_sidebar():
"""Redesigned sidebar with improved layout and additional functionality."""
st.sidebar.title("๐Ÿ“ File Management")
# Get list of .md files excluding README.md
md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md']
md_files.sort()
st.session_state.files = md_files
if md_files:
st.sidebar.markdown("### Saved Files")
for idx, file in enumerate(md_files):
st.sidebar.markdown("---") # Separator between files
# Display time
st.sidebar.text(get_time_display(file))
# Display download link with simplified text
download_link = get_file_download_link(file)
if download_link:
st.sidebar.markdown(download_link, unsafe_allow_html=True)
# Action buttons in a row
col1, col2, col3, col4 = st.sidebar.columns(4)
with col1:
if st.button("๐Ÿ“„ View", key=f"view_{idx}"):
st.session_state.selected_file = file
st.session_state.view_mode = 'view'
with col2:
if st.button("โœ๏ธ Edit", key=f"edit_{idx}"):
st.session_state.selected_file = file
st.session_state.view_mode = 'edit'
with col3:
if st.button("๐Ÿ”„ Rerun", key=f"rerun_{idx}"):
try:
with open(file, 'r', encoding='utf-8') as f:
content = f.read()
# Prepare the prompt with the prefix
rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader:
"""
full_prompt = rerun_prefix + content
# Perform AI lookup and save results
ai_result = perform_ai_lookup(full_prompt)
saved_file = save_ai_interaction(content, ai_result, is_rerun=True)
if saved_file:
st.success(f"Created fun version in {saved_file}")
st.session_state.selected_file = saved_file
st.session_state.view_mode = 'view'
except Exception as e:
st.error(f"Error during rerun: {e}")
with col4:
if st.button("๐Ÿ—‘๏ธ Delete", key=f"delete_{idx}"):
if delete_file(file):
st.success(f"Deleted {file}")
st.rerun()
else:
st.error(f"Failed to delete {file}")
st.sidebar.markdown("---")
# Option to create a new markdown file
if st.sidebar.button("๐Ÿ“ Create New Note"):
filename = generate_timestamp_filename("New Note")
with open(filename, 'w', encoding='utf-8') as f:
f.write("# New Markdown File\n")
st.sidebar.success(f"Created: {filename}")
st.session_state.selected_file = filename
st.session_state.view_mode = 'edit'
else:
st.sidebar.write("No markdown files found.")
if st.sidebar.button("๐Ÿ“ Create First Note"):
filename = generate_timestamp_filename("New Note")
with open(filename, 'w', encoding='utf-8') as f:
f.write("# New Markdown File\n")
st.sidebar.success(f"Created: {filename}")
st.session_state.selected_file = filename
st.session_state.view_mode = 'edit'
def main():
st.title("AI Knowledge Tree Builder ๐Ÿง ๐ŸŒฑ Cultivate Your AI Mindscape!")
# Process query parameters and AI lookup first
query_params = st.query_params
query = query_params.get('q', '')
show_initial_content = True # Flag to control initial content display
# First priority: Handle active query
if query:
show_initial_content = False # Hide initial content when showing query results
st.write(f"### Search query received: {query}")
try:
ai_result = perform_ai_lookup(query)
# Save the interaction
saved_file = save_ai_interaction(query, ai_result)
if saved_file:
st.success(f"Saved interaction to {saved_file}")
st.session_state.selected_file = saved_file
st.session_state.view_mode = 'view'
except Exception as e:
st.error(f"Error during AI lookup: {e}")
# File management sidebar
file_management_sidebar()
# Second priority: Display selected file content if any
if st.session_state.selected_file:
show_initial_content = False # Hide initial content when showing file content
if os.path.exists(st.session_state.selected_file):
st.markdown(f"### Current File: {st.session_state.selected_file}")
display_file_content(st.session_state.selected_file)
else:
st.error("Selected file no longer exists.")
st.session_state.selected_file = None
st.rerun()
# Show initial content: Either when first landing or when no interactive elements are active
if show_initial_content:
# First show the clickable terms with links
terms1 = extract_terms(AITopicsToInnovate1)
terms2 = extract_terms(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds)
all_terms = terms1 + terms2
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown("# AI Topics to Innovate With")
st.markdown(AITopicsToInnovate1)
with col2:
st.markdown("# AI Agent Links")
display_terms_with_links(terms1)
with col3:
st.markdown("# Multiplayer Games and MMOs")
st.markdown(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds)
with col4:
st.markdown("# Multiplayer Game and MMO Links")
display_terms_with_links(terms2)
if __name__ == "__main__":
main()