awacke1's picture
Update app.py
9ade513 verified
raw
history blame
23.3 kB
import streamlit as st
import os
import glob
import re
import base64
import pytz
from urllib.parse import quote
from gradio_client import Client
from datetime import datetime
# ๐ŸŒณ๐Ÿค– AIKnowledgeTreeBuilder - Because every app needs a good costume!
Site_Name = 'AI Knowledge Tree Builder ๐Ÿ“ˆ๐ŸŒฟ Grow Smarter with Every Click'
title = "๐ŸŒณโœจAI Knowledge Tree Builder๐Ÿ› ๏ธ๐Ÿค“"
helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
icons = '๐ŸŒณโœจ๐Ÿ› ๏ธ๐Ÿค“'
st.set_page_config(
page_title=title,
page_icon=icons,
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': helpURL,
'Report a bug': bugURL,
'About': title
}
)
# Initialize session state variables
if 'selected_file' not in st.session_state:
st.session_state.selected_file = None
if 'view_mode' not in st.session_state:
st.session_state.view_mode = 'view'
if 'files' not in st.session_state:
st.session_state.files = []
AITopicsToInnovate1="""
1. Major AI Industry Players ๐ŸŒ
1. Research Leaders ๐ŸŽฏ
- OpenAI: GPT-4 DALL-E Foundation Models ๐Ÿ”ต
- Google: PaLM Gemini LLMs ๐ŸŸฆ
- Anthropic: Claude Constitutional AI โšก
- Meta: LLaMA Open Source LLMs ๐Ÿ‘ค
- xAI: Grok Conversational AI ๐Ÿค–
2. Technical AI Development ๐Ÿ› ๏ธ
1. Architecture Advances ๐Ÿ’ซ
- Transformer Models Attention Mechanisms ๐Ÿง 
- Mixture of Experts MoE Architecture ๐ŸŽช
- Sparse Neural Networks ๐Ÿ•ธ๏ธ
- Multi-modal LLM Systems ๐ŸŒˆ
- Flash Attention Optimization โš”๏ธ
2. Training Methodologies ๐Ÿ“š
- LLM Supervised Fine-tuning ๐Ÿ‘จโ€๐Ÿซ
- RLHF Reward Models ๐Ÿค
- Constitutional AI Training ๐Ÿ“œ
- RLAIF Feedback Models ๐Ÿ”„
- Synthetic Data LLM Training ๐ŸŽฒ
- Chain of Thought Prompting ๐Ÿงฉ
- Tree of Thoughts Reasoning ๐ŸŒณ
3. Post-Training Implementation ๐Ÿ”ง
- Neural Network Distillation ๐Ÿงช
- LLM Quantization Methods ๐Ÿ“Š
- Neural Network Pruning โœ‚๏ธ
- Knowledge Distillation Transfer ๐Ÿ“–
- Few-shot LLM Learning ๐ŸŽฏ
3. Mechanistic Interpretability ๐Ÿ”ฌ
1. Core Concepts ๐Ÿ’ก
- Neural Network Growth Analysis ๐ŸŒฑ
- LLM Architecture Analysis ๐Ÿ—๏ธ
- Training Loss Optimization ๐ŸŽจ
- Neural Network Analogies ๐Ÿงฌ
2. Technical Features ๐Ÿ“
- LLM Linear Representations โžก๏ธ
- Neural Vector Arithmetic ๐Ÿ”ข
- Neural Activation Patterns ๐ŸŒŠ
- LLM Feature Detection ๐Ÿ”
- Neural Sparse Autoencoders ๐ŸŽญ
3. Network Analysis ๐Ÿ•ต๏ธ
- LLM Induction Heads ๐Ÿ‘€
- Transformer Attention Analysis ๐ŸŽช
- Neural Circuit Analysis ๐Ÿ”Œ
- LLM Feature Visualization ๐Ÿ“ˆ
- Neural Concept Directions ๐ŸŽณ
4. Future AI Developments ๐Ÿš€
1. AGI Timeline โฐ
- AGI Capability Projections ๐Ÿ“…
- Neural Hardware Scaling ๐Ÿ’พ
- LLM Training Data Limits ๐Ÿ“‰
- AI Compute Resources ๐Ÿ—บ๏ธ
2. Integration Fields ๐ŸŽก
- AI Biology Integration ๐Ÿ”ฎ
- AI Drug Discovery Systems ๐Ÿ’Š
- AI Clinical Trial Analysis ๐Ÿฅ
- AI Code Generation ๐Ÿคน
- AI Scientific Discovery ๐Ÿงฎ
5. Industry Best Practices ๐Ÿ’Ž
1. AI Team Building ๐Ÿข
- AI Talent Development ๐Ÿ‘ฅ
- AI Research Alignment ๐ŸŽช
- AI Team Scaling ๐Ÿ“Š
- AI Research Culture ๐ŸŒŸ
2. AI Research Qualities ๐ŸŽ“
- AI Research Methodology ๐Ÿงญ
- AI Experimentation Protocols ๐Ÿ—๏ธ
- AI Innovation Thinking ๐Ÿ’ซ
- AI Testing Framework โš–๏ธ
3. AI Safety Standards ๐Ÿ›ก๏ธ
- LLM Behavioral Specifications ๐Ÿ“‹
- AI Safety Guidelines ๐ŸŽฎ
- AI Ethics Framework โ›‘๏ธ
- AI Industry Standards ๐Ÿคฒ
6. Emerging Research Areas ๐Ÿ”ฎ
1. Technical Focus ๐ŸŽฏ
- LLM Long Context Learning โณ
- LLM Multi-agent Interaction ๐Ÿ‘พ
- AI Evaluation Metrics ๐Ÿ“Œ
- Neural Interpretability Methods ๐Ÿ”ญ
2. AI Applications ๐Ÿ’ผ
- AI Automated Research ๐Ÿงซ
- AI Code Synthesis โŒจ๏ธ
- AI Biological Modeling ๐Ÿงฏ
- AI Medical Diagnostics ๐Ÿ’‰
7. Model Intelligence ๐Ÿงฟ
1. LLM System Development ๐ŸŽช
- LLM Prompt Engineering ๐Ÿ“
- LLM Response Generation โ™Ÿ๏ธ
- LLM Behavioral Training ๐ŸŽน
- LLM Personality Development ๐ŸŽช
2. LLM User Interaction ๐ŸŽญ
- LLM Autonomy Alignment ๐ŸŽช
- LLM Safety Boundaries ๐Ÿ”’
- LLM Communication Patterns ๐Ÿ—ฃ๏ธ
- LLM Performance Tuning ๐ŸŽข
"""
Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds = """
# Active Multiplayer Games 2024 ๐ŸŽฎ
## 1 Traditional MMORPGs ๐Ÿ—ก๏ธ
### 1.1 Major MMORPGs ๐Ÿฐ
- Final Fantasy XIV Dawntrail 2024 โš”๏ธ
- Advanced Job System Rework ๐ŸŽญ
- Cross Platform Integration ๐ŸŽช
- New Housing Districts ๐Ÿ˜๏ธ
- World of Warcraft 2024 Season ๐Ÿฒ
- Dragon Combat System ๐Ÿฆ‹
- Cross Faction Features โšœ๏ธ
- Mythic Plus Seasons ๐Ÿ†
- Elder Scrolls Online Gold Road ๐Ÿ—๏ธ
- Dynamic Event System ๐ŸŒŸ
- Housing Construction ๐Ÿ›๏ธ
- Champion System 2.0 ๐Ÿ“Š
- Lost Ark Western T4 Update โšก
- Legion Raid Content ๐Ÿ‘พ
- Island Adventure System ๐Ÿ๏ธ
- Class Balance Rework ๐Ÿ”ฐ
- Black Desert Online Remaster ๐ŸŽช
- Combat System Update ๐ŸŽฏ
- Node Empire System ๐Ÿน
- Life Skill Evolution ๐ŸŒณ
### 1.2 Emerging MMORPGs ๐ŸŒ 
- Throne and Liberty Launch ๐Ÿ‘‘
- Weather Combat System ๐ŸŒฆ๏ธ
- Territory Wars ๐Ÿ—บ๏ธ
- Transformation System ๐Ÿ‰
- Pax Dei Medieval MMO โš”๏ธ
- City Management ๐Ÿฐ
- Faith Based Magic โœจ
- Global Trading ๐Ÿ’Ž
- Blue Protocol Western Release ๐ŸŒŒ
- Action Combat Design ๐ŸŽญ
- Class Change System โšก
- Dungeon Scaling ๐Ÿ—ผ
## 2 Survival MMOs ๐Ÿน
### 2.1 Established Survival ๐Ÿ›ก๏ธ
- Rust 2024 Updates ๐Ÿฆพ
- Electricity Programming ๐Ÿ’ก
- Vehicle System Update ๐Ÿš—
- Automated Defenses โšก
- ARK Survival Ascended ๐Ÿฆ–
- Cross ARK System ๐ŸŒ
- Creature Breeding 2.0 ๐Ÿฅš
- Base Defense Network ๐Ÿฐ
- DayZ 2024 Content ๐ŸงŸ
- Medical System Update ๐Ÿ’‰
- Disease Mechanics ๐Ÿฆ 
- Base Building 2.0 ๐Ÿ—๏ธ
- 7 Days to Die Alpha 22 ๐Ÿš๏ธ
- Physics Engine Update ๐Ÿ’ฅ
- AI Pathfinding System ๐Ÿง 
- Vehicle Customization ๐Ÿš™
### 2.2 New Survival MMOs ๐Ÿ†•
- Once Human Launch ๐Ÿงฌ
- Mutation System ๐Ÿงช
- Base Building Tech ๐Ÿญ
- Weather Impact System ๐ŸŒช๏ธ
- Nightingale Release ๐ŸŒ™
- Portal Realm System ๐ŸŒŒ
- Victorian Crafting ๐ŸŽฉ
- Fae World Design ๐Ÿงš
## 3 Hybrid MMOs ๐ŸŽฏ
### 3.1 Looter Shooters ๐Ÿ”ซ
- Destiny 2 2024 Season ๐Ÿ›ธ
- Build System 3.0 ๐Ÿ› ๏ธ
- Raid Mechanics โญ
- Season Structure ๐Ÿ“ˆ
- The Division 2 Year 6 ๐Ÿ™๏ธ
- Loadout Expansion ๐ŸŽ’
- Dark Zone Update ๐ŸŒƒ
- Manhunt System ๐ŸŽฏ
- Warframe 2024 Update ๐Ÿค–
- Movement Tech 2.0 ๐Ÿƒ
- Mod System Rework โš™๏ธ
- Open World Expansion ๐ŸŒ…
### 3.2 Action RPG MMOs ๐Ÿ’ซ
- Path of Exile 2 Beta ๐Ÿ’Ž
- Gem System Rework ๐Ÿ’ซ
- New Skill Tree ๐ŸŒฒ
- League Content ๐Ÿ†
- Diablo 4 Season Structure ๐Ÿ˜ˆ
- Season Journey System ๐ŸŽญ
- World Boss Events ๐Ÿฒ
- PvP Territories ๐Ÿ—ก๏ธ
## 4 Simulation MMOs ๐ŸŒ
### 4.1 Space Simulation ๐Ÿš€
- EVE Online 2024 ๐Ÿ›ธ
- Corporation Warfare ๐Ÿดโ€โ˜ ๏ธ
- Market System Update ๐Ÿ“Š
- Fleet Operations ๐Ÿšข
- Elite Dangerous Update ๐ŸŒŒ
- Ground Combat System ๐Ÿ‘จโ€๐Ÿš€
- Fleet Carrier Content โญ
- Planet Exploration ๐Ÿช
- Star Citizen Alpha ๐Ÿ›ธ
- Persistent Universe ๐ŸŒ
- Ship Combat Update โš”๏ธ
- Trading System 2.0 ๐Ÿ’ฐ
### 4.2 World Simulation ๐ŸŒŽ
- New World Eternal ๐Ÿ—บ๏ธ
- Territory System ๐Ÿฐ
- Crafting Update ๐Ÿ› ๏ธ
- War System 2.0 โš”๏ธ
- Albion Online 2024 ๐Ÿน
- Guild Warfare Update โš”๏ธ
- Economy System 2.0 ๐Ÿ’ฐ
- Territory Control ๐Ÿฐ
## 5 Unique Multiplayer Games ๐ŸŽฒ
### 5.1 Adventure Multiplayer ๐Ÿ—บ๏ธ
- Sea of Thieves 2024 โ›ต
- Ship Combat Physics ๐ŸŒŠ
- Crew Management ๐Ÿดโ€โ˜ ๏ธ
- World Events ๐ŸŽช
- Valheim Updates โšก
- Building System 2.0 ๐Ÿ—๏ธ
- Boss Progression ๐Ÿ‘น
- Exploration Update ๐Ÿ—บ๏ธ
### 5.2 Combat Focused ๐Ÿ—ก๏ธ
- Mordhau 2024 โš”๏ธ
- Combat Physics Update ๐Ÿคบ
- Map System Rework ๐Ÿฐ
- Tournament System ๐Ÿ†
- For Honor Year 8 ๐Ÿ›ก๏ธ
- Faction War Update โš”๏ธ
- Hero Rework System ๐ŸŽญ
- Seasonal Content ๐ŸŒŸ
## 6 Upcoming 2024 Games ๐Ÿ”ฎ
### 6.1 Launching Soon ๐Ÿ“…
- Gray Zone Warfare ๐ŸŽ–๏ธ
- Tactical Systems ๐ŸŽฏ
- Base Operations ๐Ÿข
- Territory Control ๐Ÿ—บ๏ธ
- Fractured Online ๐ŸŒŸ
- City Building ๐Ÿ—๏ธ
- Knowledge System ๐Ÿ“š
- Player Economy ๐Ÿ’ฐ
### 6.2 In Development ๐Ÿ› ๏ธ
- Ashes of Creation ๐Ÿฐ
- Node System ๐ŸŒฑ
- Castle Siege โš”๏ธ
- Caravan System ๐Ÿช
- Pantheon Rise of the Fallen ๐ŸŒ…
- Climate System ๐ŸŒฆ๏ธ
- Group Content Focus ๐Ÿ‘ฅ
- Perception System ๐Ÿ‘๏ธ
"""
def get_display_name(filename):
"""Extract text from parentheses or return filename as is."""
match = re.search(r'\((.*?)\)', filename)
if match:
return match.group(1)
return filename
def get_time_display(filename):
"""Extract just the time portion from the filename."""
time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename)
if time_match:
return time_match.group(1)
return filename
def sanitize_filename(text):
"""Create a safe filename from text while preserving spaces."""
# First replace unsafe characters with spaces
safe_text = re.sub(r'[^\w\s-]', ' ', text)
# Remove any multiple spaces
safe_text = re.sub(r'\s+', ' ', safe_text)
# Trim leading/trailing spaces
safe_text = safe_text.strip()
return safe_text[:50] # Limit length to 50 chars
def generate_timestamp_filename(query):
"""Generate filename with format: 1103AM 11032024 (Query).md"""
# Get current time in Central timezone
central = pytz.timezone('US/Central')
current_time = datetime.now(central)
# Format the timestamp parts
time_str = current_time.strftime("%I%M%p") # 1103AM format
date_str = current_time.strftime("%m%d%Y") # 11032024 format
# Clean up the query for filename - now preserving spaces
safe_query = sanitize_filename(query)
# Construct filename: "1103AM 11032024 (Input with spaces).md"
filename = f"{time_str} {date_str} ({safe_query}).md"
return filename
def delete_file(file_path):
"""Delete a file and return success status."""
try:
os.remove(file_path)
return True
except Exception as e:
st.error(f"Error deleting file: {e}")
return False
def save_ai_interaction(query, ai_result, is_rerun=False):
"""Save AI interaction to a markdown file with new filename format."""
filename = generate_timestamp_filename(query)
# Format the content differently for rerun vs normal query
if is_rerun:
content = f"""# Rerun Query
Original file content used for rerun:
{query}
# AI Response (Fun Version)
{ai_result}
"""
else:
content = f"""# Query: {query}
## AI Response
{ai_result}
"""
# Save to file
try:
with open(filename, 'w', encoding='utf-8') as f:
f.write(content)
return filename
except Exception as e:
st.error(f"Error saving file: {e}")
return None
def get_file_download_link(file_path):
"""Generate a base64 download link for a file."""
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
b64 = base64.b64encode(content.encode()).decode()
filename = os.path.basename(file_path)
return f'<a href="data:text/markdown;base64,{b64}" download="{filename}">{get_display_name(filename)}</a>'
except Exception as e:
st.error(f"Error creating download link: {e}")
return None
def extract_terms(markdown_text):
"""Parse markdown text and extract terms."""
lines = markdown_text.strip().split('\n')
terms = []
for line in lines:
line = re.sub(r'^[#*\->\d\.\s]+', '', line).strip()
if line:
terms.append(line)
return terms
def display_terms_with_links(terms):
"""Display terms with various search links."""
search_urls = {
"๐Ÿš€๐ŸŒŒArXiv": lambda k: f"/?q={quote(k)}",
"๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}",
"โ–ถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"๐Ÿฆ": lambda k: f"https://twitter.com/search?q={quote(k)}",
}
for term in terms:
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
st.markdown(f"- **{term}** {links_md}", unsafe_allow_html=True)
def perform_ai_lookup(query):
all=""
st.markdown(f"- {query}")
# ๐Ÿ”Run 1 - ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
response2 = client.predict(
query, # str in 'parameter_13' Textbox component
#"mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
#"mistralai/Mistral-7B-Instruct-v0.2", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
"google/gemma-7b-it", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
True, # bool in 'Stream output' Checkbox component
api_name="/ask_llm"
)
st.write('๐Ÿ”Run of Multi-Agent System Paper Summary Spec is Complete')
st.markdown(response2)
# ArXiv searcher ~-<>-~ Paper References - Update with RAG
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
response1 = client.predict(
query,
10,
"Semantic Search - up to 10 Mar 2024", # Literal['Semantic Search - up to 10 Mar 2024', 'Arxiv Search - Latest - (EXPERIMENTAL)'] in 'Search Source' Dropdown component
"mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
api_name="/update_with_rag_md"
)
st.write('๐Ÿ”Run of Multi-Agent System Paper References is Complete')
responseall = response2 + response1[0] + response1[1]
st.markdown(responseall)
"""Perform AI lookup using Gradio client."""
st.write("Performing AI Lookup...")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
result1 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result")
st.markdown(result1)
result2 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mistral-7B-Instruct-v0.2 Result")
st.markdown(result2)
combined_result = f"{result1}\n\n{result2}"
#return combined_result
return responseall
def display_file_content(file_path):
"""Display file content with editing capabilities."""
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
if st.session_state.view_mode == 'view':
# Display as markdown when viewing
st.markdown(content)
else:
# Edit functionality
edited_content = st.text_area(
"Edit content",
content,
height=400,
key=f"edit_{os.path.basename(file_path)}"
)
if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"):
try:
with open(file_path, 'w', encoding='utf-8') as f:
f.write(edited_content)
st.success(f"Successfully saved changes to {file_path}")
except Exception as e:
st.error(f"Error saving changes: {e}")
except Exception as e:
st.error(f"Error reading file: {e}")
def file_management_sidebar():
"""Redesigned sidebar with improved layout and additional functionality."""
st.sidebar.title("๐Ÿ“ File Management")
# Get list of .md files excluding README.md
md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md']
md_files.sort()
st.session_state.files = md_files
if md_files:
st.sidebar.markdown("### Saved Files")
for idx, file in enumerate(md_files):
st.sidebar.markdown("---") # Separator between files
# Display time
st.sidebar.text(get_time_display(file))
# Display download link with simplified text
download_link = get_file_download_link(file)
if download_link:
st.sidebar.markdown(download_link, unsafe_allow_html=True)
# Action buttons in a row
col1, col2, col3, col4 = st.sidebar.columns(4)
with col1:
if st.button("๐Ÿ“„ View", key=f"view_{idx}"):
st.session_state.selected_file = file
st.session_state.view_mode = 'view'
with col2:
if st.button("โœ๏ธ Edit", key=f"edit_{idx}"):
st.session_state.selected_file = file
st.session_state.view_mode = 'edit'
with col3:
if st.button("๐Ÿ”„ Rerun", key=f"rerun_{idx}"):
try:
with open(file, 'r', encoding='utf-8') as f:
content = f.read()
# Prepare the prompt with the prefix
rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader:
"""
full_prompt = rerun_prefix + content
# Perform AI lookup and save results
ai_result = perform_ai_lookup(full_prompt)
saved_file = save_ai_interaction(content, ai_result, is_rerun=True)
if saved_file:
st.success(f"Created fun version in {saved_file}")
st.session_state.selected_file = saved_file
st.session_state.view_mode = 'view'
except Exception as e:
st.error(f"Error during rerun: {e}")
with col4:
if st.button("๐Ÿ—‘๏ธ Delete", key=f"delete_{idx}"):
if delete_file(file):
st.success(f"Deleted {file}")
st.rerun()
else:
st.error(f"Failed to delete {file}")
st.sidebar.markdown("---")
# Option to create a new markdown file
if st.sidebar.button("๐Ÿ“ Create New Note"):
filename = generate_timestamp_filename("New Note")
with open(filename, 'w', encoding='utf-8') as f:
f.write("# New Markdown File\n")
st.sidebar.success(f"Created: {filename}")
st.session_state.selected_file = filename
st.session_state.view_mode = 'edit'
else:
st.sidebar.write("No markdown files found.")
if st.sidebar.button("๐Ÿ“ Create First Note"):
filename = generate_timestamp_filename("New Note")
with open(filename, 'w', encoding='utf-8') as f:
f.write("# New Markdown File\n")
st.sidebar.success(f"Created: {filename}")
st.session_state.selected_file = filename
st.session_state.view_mode = 'edit'
def main():
st.title("AI Knowledge Tree Builder ๐Ÿง ๐ŸŒฑ Cultivate Your AI Mindscape!")
# Process query parameters and AI lookup first
query_params = st.query_params
query = query_params.get('q', '')
show_initial_content = True # Flag to control initial content display
# First priority: Handle active query
if query:
show_initial_content = False # Hide initial content when showing query results
st.write(f"### Search query received: {query}")
try:
ai_result = perform_ai_lookup(query)
# Save the interaction
saved_file = save_ai_interaction(query, ai_result)
if saved_file:
st.success(f"Saved interaction to {saved_file}")
st.session_state.selected_file = saved_file
st.session_state.view_mode = 'view'
except Exception as e:
st.error(f"Error during AI lookup: {e}")
# File management sidebar
file_management_sidebar()
# Second priority: Display selected file content if any
if st.session_state.selected_file:
show_initial_content = False # Hide initial content when showing file content
if os.path.exists(st.session_state.selected_file):
st.markdown(f"### Current File: {st.session_state.selected_file}")
display_file_content(st.session_state.selected_file)
else:
st.error("Selected file no longer exists.")
st.session_state.selected_file = None
st.rerun()
# Show initial content: Either when first landing or when no interactive elements are active
if show_initial_content:
# First show the clickable terms with links
terms1 = extract_terms(AITopicsToInnovate1)
terms2 = extract_terms(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds)
all_terms = terms1 + terms2
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown("# AI Topics to Innovate With")
st.markdown(AITopicsToInnovate1)
with col2:
st.markdown("# AI Agent Links")
display_terms_with_links(terms1)
with col3:
st.markdown("# Multiplayer Games and MMOs")
st.markdown(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds)
with col4:
st.markdown("# Multiplayer Game and MMO Links")
display_terms_with_links(terms2)
if __name__ == "__main__":
main()