Spaces:
Sleeping
Sleeping
File size: 27,915 Bytes
2e679f3 93f54d2 2625a2d 67609ca 2e679f3 e1df218 2e679f3 67609ca 2e679f3 86c0fd1 2e679f3 fee9d8b 2e679f3 fee9d8b 2e679f3 fee9d8b 2e679f3 30fa482 fee9d8b 2e679f3 fee9d8b 2e679f3 fee9d8b 2e679f3 fee9d8b 2e679f3 fee9d8b 2e679f3 68de287 d429406 8d7aa73 2625a2d 8d7aa73 2625a2d 8d7aa73 2625a2d d429406 2625a2d 93f54d2 d429406 93f54d2 d429406 93f54d2 2e679f3 68de287 2e679f3 68de287 2e679f3 67609ca 2e679f3 67609ca 68de287 2e679f3 67609ca 2e679f3 67609ca 2e679f3 93f54d2 2e679f3 93f54d2 d429406 2e679f3 93f54d2 2e679f3 68de287 2e679f3 68de287 93f54d2 2e679f3 68de287 2e679f3 68de287 93f54d2 d429406 93f54d2 68de287 d429406 93f54d2 68de287 d429406 68de287 2e679f3 93f54d2 68de287 2e679f3 68de287 d429406 68de287 d429406 93f54d2 68de287 2e679f3 68de287 2e679f3 68de287 2e679f3 68de287 2e679f3 68de287 2e679f3 42f0646 2e679f3 aaade2b 93f54d2 54e4022 93f54d2 54e4022 93f54d2 54e4022 93f54d2 32a3806 93f54d2 2e679f3 54e4022 93f54d2 54e4022 d429406 2e679f3 d429406 54e4022 86c0fd1 aaade2b 54e4022 aaade2b 54e4022 86c0fd1 54e4022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 |
import streamlit as st
import os
import glob
import re
import base64
import pytz
from urllib.parse import quote
from gradio_client import Client
from datetime import datetime
# ๐ณ๐ค AIKnowledgeTreeBuilder - Because every app needs a good costume!
Site_Name = 'AI Knowledge Tree Builder ๐๐ฟ Grow Smarter with Every Click'
title = "๐ณโจAI Knowledge Tree Builder๐ ๏ธ๐ค"
helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/'
icons = '๐ณโจ๐ ๏ธ๐ค'
st.set_page_config(
page_title=title,
page_icon=icons,
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': helpURL,
'Report a bug': bugURL,
'About': title
}
)
# Initialize session state variables
if 'selected_file' not in st.session_state:
st.session_state.selected_file = None
if 'view_mode' not in st.session_state:
st.session_state.view_mode = 'view'
if 'files' not in st.session_state:
st.session_state.files = []
DarioAmodeiKnowledge="""
๐ข Major AI Companies & Competition
๐ต OpenAI - Key competitor in AI development
๐ฆ Google - Major player in AI research and development
โก xAI - Emerging competitor in AI space
๐ค Meta - Significant presence in AI development
๐ฏ Anthropic's Approach & Philosophy
๐ "Race to the Top" theory of change
๐ Focus on setting positive industry examples
๐ค Goal to encourage other companies to "be the good guy"
๐ Strategy of continuous innovation in responsible AI
๐ Mechanistic Interpretability
๐จโ๐ฌ Co-founded by Chris Olah at Anthropic
๐งฉ Focuses on understanding AI model internals
๐ Initially had no commercial application
๐ Built and shared results publicly
๐ Industry Impact
๐ซ Other companies adopted interpretability practices
๐ Created positive competitive pressure
๐ฑ Companies motivated to appear responsible
๐ Led to industry-wide ripple effects
๐งช Technical Discoveries
๐งฎ Found surprisingly clean internal structures
๐ Discovered induction heads
๐ Developed sparse auto-encoder techniques
๐ Identified concept-specific directions in networks
๐ฅ Team Building Philosophy
๐ซ "Talent density beats talent mass" principle
๐ฏ Focus on highly motivated, mission-aligned individuals
๐ Quality of team members affects organizational culture
๐โโ๏ธ Growth approach:
๐ Rapid growth (300 to 800 in 7-8 months)
๐ Deliberate slowdown at ~1000 employees
โ๏ธ Emphasis on careful scaling
๐งช Ideal AI Researcher Qualities
๐ง Open-mindedness as primary quality
๐ฌ Scientific mindset for experimentation
๐ Ability to look at problems with fresh eyes
๐ Willingness to explore unconventional approaches
๐ Capacity for rapid experimentation
๐ Background examples:
๐ญ Theoretical physicists (fast learners)
๐ป Senior software engineers
๐ Research specialists
๐ Advice for Aspiring AI Professionals
๐ค Start by actively experimenting with AI models
๐ฏ Focus areas recommended:
๐ Mechanistic interpretability
โณ Long horizon learning
๐ Evaluation systems
๐ฅ Multi-agent systems
๐ "Skate where the puck is going" mentality
๐ก Look for unexplored areas with low competition
๐ฑ Focus on emerging fields rather than saturated ones
๐ Post-Training Methodology
๐ Key components include:
๐จโ๐ซ Supervised fine-tuning
๐ฏ RLHF (Reinforcement Learning from Human Feedback)
๐ Constitutional AI
๐ RLAIF (Reinforcement Learning from AI Feedback)
๐ฒ Synthetic data generation
๐ฐ Cost considerations:
๐๏ธ Pre-training remains majority of costs currently
๐ Post-training costs may increase in future
๐ค Human feedback scaling limitations
๐ฏ RLHF Insights
๐ง Core function: Bridges gap between human needs and model capabilities
๐ Key characteristics:
๐จ Doesn't make models smarter, improves communication
๐ "Unhobbles" model capabilities
๐ Increases helpfulness metrics
๐ Implementation approach:
โ๏ธ Compare two model outputs
โญ Human preference ratings
๐ฏ Focus on human preferences in responses
๐ Constitutional AI Framework
๐ Core concept: Self-regulatory AI training
๐ ๏ธ Key components:
๐ Human-interpretable principles document
๐ค AI self-evaluation of responses
๐ Self-play training mechanism
๐ฏ Implementation aspects:
๐ง Used alongside RLHF and other methods
๐จ Flexibility for different use cases
โ๏ธ Balance between specific rules and neutral stance
๐ Broader implications:
๐ Basic universal principles (safety, democracy)
๐๏ธ Customizable for different applications
๐ค Industry adoption leading to positive competition
๐ค Industry Collaboration & Standards
๐ Model Specifications approach:
๐ OpenAI's release of concrete model behavior specs
๐ฏ Defines specific behavioral examples
๐ Clear goal documentation
๐ Similar to Constitutional AI principles
๐โโ๏ธ "Race to the Top" dynamics:
๐ Companies adopting each other's best practices
๐ก Innovation driving industry standards upward
๐ Competitive advantages become industry norms
๐ฑ Continuous need for new improvements
๐ Industry Evolution:
๐ค Different implementations of similar concepts
๐ Learning from other companies' approaches
๐ฏ Focus on responsible development practices
๐ Shared goal of improving field standards
๐ Key Benefits:
๐ก๏ธ Enhanced safety practices
๐ Better model transparency
๐ค Increased industry collaboration
๐ Accelerated positive development
โ AGI Timeline & Development
๐ฏ Near-term predictions:
๐
2026-2027 based on capability curves
๐ Gradual progression rather than sudden jump
๐ง Potential blockers:
๐พ Data limitations
๐ง Hardware scaling issues
๐ Geopolitical disruptions (e.g., Taiwan/GPU production)
๐ Current trajectory:
๐ Moving from undergraduate to PhD level capabilities
๐ ๏ธ Adding new modalities continuously
๐ Fewer convincing blockers remaining
๐งฌ Future of Biology & AI
๐ฌ Key challenges in biology:
๐๏ธ Limited ability to observe cellular processes
๐ฏ Difficulty in precise intervention
๐งช Need for better measurement tools
๐ค AI's role in biological research:
๐ Million AI systems working simultaneously
๐งซ Enhanced experimental design
๐ Improved observation methods
๐งฎ Better data analysis capabilities
๐ Clinical applications:
๐ More efficient clinical trials
๐ฅ Reduced patient requirements
โก Accelerated testing processes
๐ฌ Enhanced simulation capabilities
๐จโ๐ฌ Future Scientist-AI Collaboration
๐ฏ Early stage collaboration:
๐จโ๐ซ Human PIs directing AI "grad students"
๐ค AI handling literature review, experiments, analysis
๐ฌ AI managing lab equipment and protocols
๐ Evolution of roles:
๐ 1000 AI assistants per human researcher
๐ Transition to AI as principal investigators
๐ฅ Humans in supporting/specialized roles
๐ ๏ธ Enhanced capabilities:
๐ Automated data analysis
๐งช Experiment design optimization
๐ Automated reporting
๐ Quality control automation
๐ป Future of Programming & AI
๐ Rapid transformation factors:
โก Close proximity to AI development
๐ Immediate feedback loops
๐ Swift capability improvement (3% to 50% in 2023)
๐ฅ Human role evolution:
๐จ Focus shift to high-level design
๐๏ธ System architecture importance
๐ค UX and user experience emphasis
๐ ๏ธ Development tools future:
๐ก Enhanced IDE capabilities
๐ง Integrated AI assistance
๐ฏ Specialized tooling per domain
๐ค Third-party tool ecosystem growth
Amanda Askell Lex Fridman (02:42:44) Thank you. Thanks for listening to this conversation with Dario Amodei. And now, dear friends, hereโs Amanda Askell. You are a philosopher by training. So what s
pasted
AW
Now these:
I'll create sections from this part of the transcript focusing on Amanda Askell's insights:
๐ Philosophy to AI Journey
๐ง Academic background:
๐ Philosophy studies at Oxford and NYU
โ๏ธ Focus on ethics and infinite ethics
๐ Transition to AI in 2017-2018
๐ ๏ธ Career evolution:
๐ Started in AI policy
๐ Moved to AI evaluation
๐ป Transitioned to technical alignment
๐ฌ Focus on empirical testing
๐ก Technical Learning Journey
๐ฏ Key insights for non-technical people:
๐ซ Rejecting binary "technical/non-technical" labels
๐ฎ Project-based learning approach
๐ช Emphasis on trying and potential failure
๐ ๏ธ Focus on practical implementation
๐ Learning methodology:
๐ Hands-on project work preferred over courses
๐ฒ Using games and puzzles as learning tools
๐ Iterative approach to skill building
๐ช Emphasis on capability over credentials
๐ค Claude's Character Development
๐ญ Core principles:
๐ฏ Alignment-focused rather than product-focused
๐ค Emphasis on ideal behavioral models
๐ Rich Aristotelian notion of character
๐ Balance between respect and guidance
๐จ Key traits developed:
๐ข Honesty and authenticity
๐ Cultural sensitivity
๐ค Respect for user autonomy
๐ญ Nuanced thinking
๐ฏ Appropriate pushback
๐ฌ Model Interaction Philosophy
๐ฏ Conversation goals:
๐ Mapping model behavior
๐ High-quality interaction data
๐งช Testing response patterns
๐จ Creative expression:
๐ Poetry as creativity indicator
๐ญ Moving beyond average responses
๐ก Encouraging unique expression
๐ Testing methodology:
๐ Quality over quantity in interactions
๐ฏ Diverse range of scenarios
๐งช Probing edge cases and limitations
๐ Constitutional AI Implementation
๐ Core components:
๐ค Reinforcement learning from AI feedback
โ๏ธ Principle-based evaluation
๐ Response ranking system
๐ฏ Balance between helpfulness and safety
๐ ๏ธ Practical applications:
๐ซ Harmlessness principles
๐ Historical accuracy evaluation
๐ Model self-assessment
๐จ Character development
โ๏ธ System Prompts Evolution
๐ Key aspects:
๐ Iterative improvement process
๐ฏ Behavior modification goals
โ๏ธ Balance between control and flexibility
๐จ Quick fixes for model behaviors
๐ญ Response patterns:
๐ซ Removing filler phrases
โก Quick iteration capability
๐ Behavior adjustment tools
๐ Integration with training
๐ง Model Intelligence Perception
๐ User feedback patterns:
๐ญ Perceived intelligence changes
๐ Consistency in base model
๐ญ Psychological factors
๐ Expectation management
๐ฏ Performance factors:
๐ฒ Randomness in responses
๐ Prompt sensitivity
๐ System prompt impact
๐ก User experience variations
๐ค Model-User Interaction Philosophy
๐ฏ Core principles:
๐ค Respect for user autonomy
โ๏ธ Balancing correction vs. confidence
๐ฃ๏ธ Communication style adaptation
๐ Safety boundaries
๐ Development focus:
๐จ Character enhancement
๐ Empirical improvement approach
๐ก๏ธ Robust safety measures
๐ Practical effectiveness priority
Chris Olah Lex Fridman (04:17:45) Thanks for listening to this conversation with Amanda Askell. And now, dear friends, hereโs Chris Olah. Can you describe this fascinating field of mechanistic inter
pasted
AW
now these:
I'll create sections from this portion focusing on mechanistic interpretability and related concepts:
๐ง Mechanistic Interpretability Fundamentals
๐ฑ Core concept comparisons:
๐๏ธ Neural networks as grown vs programmed
๐ฟ Architecture as scaffold for growth
๐ฆ Training objectives as guiding light
๐งฌ Models as biological-like entities
๐ฏ Key goals:
๐ Understanding internal mechanisms
๐งฎ Reverse engineering weights
๐ค Discovering algorithms
๐ Analyzing activations
๐งช Features & Universality
๐ Universal patterns:
๐ Same features across different networks
๐งฌ Similarities with biological networks
๐ฏ Common detector types
๐ Shared abstract concepts
๐จ Feature examples:
๐ Curve detectors
๐ญ Face recognition
๐ Text patterns
๐ Color contrast detection
๐ Linear Representation Hypothesis
๐ฏ Key concepts:
โก๏ธ Directions have meaning
๐ข Vector arithmetic works
๐ Scalable activation patterns
๐ Consistent across models
๐ Applications:
๐ Word embeddings
๐ Concept combinations
๐งฎ Vector operations
๐ฏ Feature detection
๐ Superposition & Polysemanticity
๐งฉ Core concepts:
๐ฆ Compressed sensing principles
๐ Multiple concepts per neuron
๐ญ Hidden sparse representations
๐ Dimensional efficiency
๐ ๏ธ Technical aspects:
๐ Sparse activation patterns
๐ Feature extraction methods
๐งฎ Dictionary learning
๐ฏ Monosemantic feature discovery
๐ฌ Microscopic vs Macroscopic Understanding
๐ฏ Key challenges:
๐ Balancing detailed vs broad analysis
๐งฉ Building abstraction hierarchies
๐ Connecting micro to macro behaviors
๐ Scaling understanding upward
๐๏ธ Biological analogies:
๐งฌ Molecular to ecological levels
๐ซ Organ system comparisons
๐ง Neural network "anatomy"
๐ Multiple abstraction layers
๐จ Beauty & Understanding of Neural Networks
โจ Aesthetic aspects:
๐ฑ Simplicity generating complexity
๐ญ Emergent behaviors
๐ฎ Hidden structures
๐ฏ Natural patterns
๐ Research motivations:
๐ก๏ธ Safety considerations
๐จ Appreciation of beauty
๐งช Scientific curiosity
๐ Understanding emergence
๐ Comparative advantages:
๐ Complete data access
๐งช Experimental control
๐ฌ Intervention capabilities
๐ Weight visibility
๐งฎ Gradient information
"""
# Define the markdown variables
Boxing_and_MMA_Commentary_and_Knowledge = """
# Boxing and UFC Study of 1971 - 2024 The Greatest Fights History
1. In Boxing, the most heart breaking fight in Boxing was the Boom Boom Mancini fight with Duku Kim.
2. After changes to Boxing made it more safe due to the heart break.
3. Rehydration of the brain after weight ins loss preparation for a match is life saving change.
4. Fighting went from 15 rounds to 12.
# UFC By Contrast..
1. 5 Rounds of 5 Minutes each.
2. Greatest UFC Fighters:
- Jon Jones could be the greatest of all time (GOAT) since he never lost.
- George St. Pierre
- BJ Penn
- Anderson Silva
- Mighty Mouse MMA's heart at 125 pounds
- Kabib retired 29 and 0
- Fedor Milliano
- Alex Pereira
- James Tony
- Randy Couture
3. You have to Judge them in their Championship Peak
4. Chris Weidman
5. Connor McGregor
6. Leg Breaking - Shin calcification and breaking baseball bats
# References:
1. Joe Rogan - Interview #2219
2. Donald J Trump
"""
Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds = """
# Multiplayer Simulated Worlds
# Farming Simulator 25 Prompt Features with Emojis:
๐ซ๐ซ Name 25 Farm Crops ๐๐ฅฌ
๐ Create 3 Farming Maps ๐๐
๐ Show 400+ Farm Machines ๐
๐ท๏ธ List 150 Brands of Farm Machines ๐ท๏ธ
๐ Discuss in Depth 8 Farm Animals ๐
โ๏ธ Farm Challenges galore! ๐ช๏ธ
1. 7 Days To Die PC
2. ARK: Survival Evolved PC
3. Arma 3 PC
4. Atlas PC
5. Conan Exiles PC
6. Craftopia PC
7. DayZ PC
8. Eco - Global Survival PC
9. Empyrion - Galactic Survival PC
10. Factorio PC
11. Farming Simulator 19 PC
12. Crossplay
13. Farming Simulator 22
14. Last Oasis PC
15. Last Oasis Classic PC
16. Minecraft (Vanilla) PC
17. Crossplay
18. Path of Titans
19. Rust PC
20. SCP: Secret Laboratory PC
21. SCUM PC
22. Satisfactory PC
23. Satisfactory (Experimental) PC
24. Crossplay
25. Space Engineers
26. Terraria (tShock & Vanilla) PC
27. The Forest PC
28. Crossplay
29. Valheim
"""
def get_display_name(filename):
"""Extract text from parentheses or return filename as is."""
match = re.search(r'\((.*?)\)', filename)
if match:
return match.group(1)
return filename
def get_time_display(filename):
"""Extract just the time portion from the filename."""
time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename)
if time_match:
return time_match.group(1)
return filename
def sanitize_filename(text):
"""Create a safe filename from text while preserving spaces."""
# First replace unsafe characters with spaces
safe_text = re.sub(r'[^\w\s-]', ' ', text)
# Remove any multiple spaces
safe_text = re.sub(r'\s+', ' ', safe_text)
# Trim leading/trailing spaces
safe_text = safe_text.strip()
return safe_text[:50] # Limit length to 50 chars
def generate_timestamp_filename(query):
"""Generate filename with format: 1103AM 11032024 (Query).md"""
# Get current time in Central timezone
central = pytz.timezone('US/Central')
current_time = datetime.now(central)
# Format the timestamp parts
time_str = current_time.strftime("%I%M%p") # 1103AM format
date_str = current_time.strftime("%m%d%Y") # 11032024 format
# Clean up the query for filename - now preserving spaces
safe_query = sanitize_filename(query)
# Construct filename: "1103AM 11032024 (Input with spaces).md"
filename = f"{time_str} {date_str} ({safe_query}).md"
return filename
def delete_file(file_path):
"""Delete a file and return success status."""
try:
os.remove(file_path)
return True
except Exception as e:
st.error(f"Error deleting file: {e}")
return False
def save_ai_interaction(query, ai_result, is_rerun=False):
"""Save AI interaction to a markdown file with new filename format."""
filename = generate_timestamp_filename(query)
# Format the content differently for rerun vs normal query
if is_rerun:
content = f"""# Rerun Query
Original file content used for rerun:
{query}
# AI Response (Fun Version)
{ai_result}
"""
else:
content = f"""# Query: {query}
## AI Response
{ai_result}
"""
# Save to file
try:
with open(filename, 'w', encoding='utf-8') as f:
f.write(content)
return filename
except Exception as e:
st.error(f"Error saving file: {e}")
return None
def get_file_download_link(file_path):
"""Generate a base64 download link for a file."""
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
b64 = base64.b64encode(content.encode()).decode()
filename = os.path.basename(file_path)
return f'<a href="data:text/markdown;base64,{b64}" download="{filename}">{get_display_name(filename)}</a>'
except Exception as e:
st.error(f"Error creating download link: {e}")
return None
def extract_terms(markdown_text):
"""Parse markdown text and extract terms."""
lines = markdown_text.strip().split('\n')
terms = []
for line in lines:
line = re.sub(r'^[#*\->\d\.\s]+', '', line).strip()
if line:
terms.append(line)
return terms
def display_terms_with_links(terms):
"""Display terms with various search links."""
search_urls = {
"๐๐ArXiv": lambda k: f"/?q={quote(k)}",
"๐": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"๐": lambda k: f"https://www.google.com/search?q={quote(k)}",
"โถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"๐": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"๐ฆ": lambda k: f"https://twitter.com/search?q={quote(k)}",
}
for term in terms:
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
st.markdown(f"- **{term}** {links_md}", unsafe_allow_html=True)
def perform_ai_lookup(query):
"""Perform AI lookup using Gradio client."""
st.write("Performing AI Lookup...")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
result1 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result")
st.markdown(result1)
result2 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mistral-7B-Instruct-v0.2 Result")
st.markdown(result2)
combined_result = f"{result1}\n\n{result2}"
return combined_result
def display_file_content(file_path):
"""Display file content with editing capabilities."""
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
if st.session_state.view_mode == 'view':
# Display as markdown when viewing
st.markdown(content)
else:
# Edit functionality
edited_content = st.text_area(
"Edit content",
content,
height=400,
key=f"edit_{os.path.basename(file_path)}"
)
if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"):
try:
with open(file_path, 'w', encoding='utf-8') as f:
f.write(edited_content)
st.success(f"Successfully saved changes to {file_path}")
except Exception as e:
st.error(f"Error saving changes: {e}")
except Exception as e:
st.error(f"Error reading file: {e}")
def file_management_sidebar():
"""Redesigned sidebar with improved layout and additional functionality."""
st.sidebar.title("๐ File Management")
# Get list of .md files excluding README.md
md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md']
md_files.sort()
st.session_state.files = md_files
if md_files:
st.sidebar.markdown("### Saved Files")
for idx, file in enumerate(md_files):
st.sidebar.markdown("---") # Separator between files
# Display time
st.sidebar.text(get_time_display(file))
# Display download link with simplified text
download_link = get_file_download_link(file)
if download_link:
st.sidebar.markdown(download_link, unsafe_allow_html=True)
# Action buttons in a row
col1, col2, col3, col4 = st.sidebar.columns(4)
with col1:
if st.button("๐ View", key=f"view_{idx}"):
st.session_state.selected_file = file
st.session_state.view_mode = 'view'
with col2:
if st.button("โ๏ธ Edit", key=f"edit_{idx}"):
st.session_state.selected_file = file
st.session_state.view_mode = 'edit'
with col3:
if st.button("๐ Rerun", key=f"rerun_{idx}"):
try:
with open(file, 'r', encoding='utf-8') as f:
content = f.read()
# Prepare the prompt with the prefix
rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader:
"""
full_prompt = rerun_prefix + content
# Perform AI lookup and save results
ai_result = perform_ai_lookup(full_prompt)
saved_file = save_ai_interaction(content, ai_result, is_rerun=True)
if saved_file:
st.success(f"Created fun version in {saved_file}")
st.session_state.selected_file = saved_file
st.session_state.view_mode = 'view'
except Exception as e:
st.error(f"Error during rerun: {e}")
with col4:
if st.button("๐๏ธ Delete", key=f"delete_{idx}"):
if delete_file(file):
st.success(f"Deleted {file}")
st.rerun()
else:
st.error(f"Failed to delete {file}")
st.sidebar.markdown("---")
# Option to create a new markdown file
if st.sidebar.button("๐ Create New Note"):
filename = generate_timestamp_filename("New Note")
with open(filename, 'w', encoding='utf-8') as f:
f.write("# New Markdown File\n")
st.sidebar.success(f"Created: {filename}")
st.session_state.selected_file = filename
st.session_state.view_mode = 'edit'
else:
st.sidebar.write("No markdown files found.")
if st.sidebar.button("๐ Create First Note"):
filename = generate_timestamp_filename("New Note")
with open(filename, 'w', encoding='utf-8') as f:
f.write("# New Markdown File\n")
st.sidebar.success(f"Created: {filename}")
st.session_state.selected_file = filename
st.session_state.view_mode = 'edit'
def main():
st.title("AI Knowledge Tree Builder ๐ง ๐ฑ Cultivate Your AI Mindscape!")
# Process query parameters and AI lookup first
query_params = st.query_params
query = query_params.get('q', '')
show_initial_content = True # Flag to control initial content display
# First priority: Handle active query
if query:
show_initial_content = False # Hide initial content when showing query results
st.write(f"### Search query received: {query}")
try:
ai_result = perform_ai_lookup(query)
# Save the interaction
saved_file = save_ai_interaction(query, ai_result)
if saved_file:
st.success(f"Saved interaction to {saved_file}")
st.session_state.selected_file = saved_file
st.session_state.view_mode = 'view'
except Exception as e:
st.error(f"Error during AI lookup: {e}")
# File management sidebar
file_management_sidebar()
# Second priority: Display selected file content if any
if st.session_state.selected_file:
show_initial_content = False # Hide initial content when showing file content
if os.path.exists(st.session_state.selected_file):
st.markdown(f"### Current File: {st.session_state.selected_file}")
display_file_content(st.session_state.selected_file)
else:
st.error("Selected file no longer exists.")
st.session_state.selected_file = None
st.rerun()
# Show initial content: Either when first landing or when no interactive elements are active
if show_initial_content:
# First show the clickable terms with links
terms1 = extract_terms(DarioAmodeiKnowledge)
terms2 = extract_terms(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds)
all_terms = terms1 + terms2
col1, col2 = st.columns(2)
with col1:
st.markdown("### Dario Amodei Knowledge")
st.markdown(DarioAmodeiKnowledge)
st.markdown("#### Related Links")
display_terms_with_links(terms1)
with col2:
st.markdown("### Multiplayer Games")
st.markdown(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds)
st.markdown("#### Related Links")
display_terms_with_links(terms2)
if __name__ == "__main__":
main() |