Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
import os | |
import re | |
import glob | |
import json | |
import base64 | |
import zipfile | |
import random | |
import requests | |
import streamlit as st | |
import streamlit.components.v1 as components | |
import time | |
# If you do model inference via huggingface_hub: | |
# from huggingface_hub import InferenceClient | |
######################################################################################## | |
# 1) GLOBAL CONFIG & PLACEHOLDERS | |
######################################################################################## | |
BASE_URL = "https://huggingface.co/spaces/awacke1/MermaidMarkdownDiagramEditor" | |
BASE_URL = "" | |
PromptPrefix = "AI-Search: " | |
PromptPrefix2 = "AI-Refine: " | |
PromptPrefix3 = "AI-JS: " | |
roleplaying_glossary = { | |
"Core Rulebooks": { | |
"Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"], | |
"GURPS": ["Basic Set Characters", "Basic Set Campaigns"] | |
}, | |
"Campaigns & Adventures": { | |
"Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"] | |
} | |
} | |
transhuman_glossary = { | |
"Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"], | |
"Cybernetics": ["Robotic Limbs", "Augmented Eyes"], | |
} | |
def process_text(text): | |
"""🕵️ process_text: detective style—prints lines to Streamlit for debugging.""" | |
st.write(f"process_text called with: {text}") | |
def search_arxiv(text): | |
"""🔭 search_arxiv: pretend to search ArXiv, just prints debug.""" | |
st.write(f"search_arxiv called with: {text}") | |
def SpeechSynthesis(text): | |
"""🗣 Simple logging for text-to-speech placeholders.""" | |
st.write(f"SpeechSynthesis called with: {text}") | |
def process_image(image_file, prompt): | |
"""📷 Simple placeholder for image AI pipeline.""" | |
return f"[process_image placeholder] {image_file} => {prompt}" | |
def process_video(video_file, seconds_per_frame): | |
"""🎞 Simple placeholder for video AI pipeline.""" | |
st.write(f"[process_video placeholder] {video_file}, {seconds_per_frame} sec/frame") | |
API_URL = "https://huggingface-inference-endpoint-placeholder" | |
API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" | |
def InferenceLLM(prompt): | |
"""🔮 Stub returning mock response for 'prompt'.""" | |
return f"[InferenceLLM placeholder response to prompt: {prompt}]" | |
######################################################################################## | |
# 2) GLOSSARY & FILE UTILITY | |
######################################################################################## | |
def display_glossary_entity(k): | |
""" | |
Creates multiple link emojis for a single entity. | |
Each link might point to /?q=..., /?q=<prefix>..., or external sites. | |
""" | |
search_urls = { | |
"🚀🌌ArXiv": lambda x: f"/?q={quote(x)}", | |
"🃏Analyst": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix)}", | |
"📚PyCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix2)}", | |
"🔬JSCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix3)}", | |
"📖": lambda x: f"https://en.wikipedia.org/wiki/{quote(x)}", | |
"🔍": lambda x: f"https://www.google.com/search?q={quote(x)}", | |
"🔎": lambda x: f"https://www.bing.com/search?q={quote(x)}", | |
"🎥": lambda x: f"https://www.youtube.com/results?search_query={quote(x)}", | |
"🐦": lambda x: f"https://twitter.com/search?q={quote(x)}", | |
} | |
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()]) | |
st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True) | |
def display_content_or_image(query): | |
""" | |
If 'query' is in transhuman_glossary or there's an image matching 'images/<query>.png', | |
show it. Otherwise warn. | |
""" | |
for category, term_list in transhuman_glossary.items(): | |
for term in term_list: | |
if query.lower() in term.lower(): | |
st.subheader(f"Found in {category}:") | |
st.write(term) | |
return True | |
image_path = f"images/{query}.png" | |
if os.path.exists(image_path): | |
st.image(image_path, caption=f"Image for {query}") | |
return True | |
st.warning("No matching content or image found.") | |
return False | |
def clear_query_params(): | |
"""Warn about clearing. Full clearing requires a redirect or st.experimental_set_query_params().""" | |
st.warning("Define a redirect or link without query params if you want to truly clear them.") | |
######################################################################################## | |
# 3) FILE-HANDLING (MD files, etc.) | |
######################################################################################## | |
def load_file(file_path): | |
"""Load file contents as UTF-8 text, or return empty on error.""" | |
try: | |
with open(file_path, "r", encoding='utf-8') as f: | |
return f.read() | |
except: | |
return "" | |
def create_zip_of_files(files): | |
"""Combine multiple local .md files into a single .zip for user to download.""" | |
zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip" | |
with zipfile.ZipFile(zip_name, 'w') as zipf: | |
for file in files: | |
zipf.write(file) | |
return zip_name | |
def get_zip_download_link(zip_file): | |
"""Return an <a> link to download the given zip_file (base64-encoded).""" | |
with open(zip_file, 'rb') as f: | |
data = f.read() | |
b64 = base64.b64encode(data).decode() | |
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>' | |
def get_table_download_link(file_path): | |
""" | |
Creates a download link for a single file from your snippet. | |
Encodes it as base64 data. | |
""" | |
try: | |
with open(file_path, 'r', encoding='utf-8') as file: | |
data = file.read() | |
b64 = base64.b64encode(data.encode()).decode() | |
file_name = os.path.basename(file_path) | |
ext = os.path.splitext(file_name)[1] | |
mime_map = { | |
'.txt': 'text/plain', | |
'.py': 'text/plain', | |
'.xlsx': 'text/plain', | |
'.csv': 'text/plain', | |
'.htm': 'text/html', | |
'.md': 'text/markdown', | |
'.wav': 'audio/wav' | |
} | |
mime_type = mime_map.get(ext, 'application/octet-stream') | |
return f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>' | |
except: | |
return '' | |
def get_file_size(file_path): | |
"""Get file size in bytes.""" | |
return os.path.getsize(file_path) | |
def FileSidebar(): | |
""" | |
Renders .md files, providing open/view/delete/run logic in the sidebar. | |
""" | |
all_files = glob.glob("*.md") | |
# Exclude short-named or special files if needed: | |
all_files = [f for f in all_files if len(os.path.splitext(f)[0]) >= 5] | |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) | |
Files1, Files2 = st.sidebar.columns(2) | |
with Files1: | |
if st.button("🗑 Delete All"): | |
for file in all_files: | |
os.remove(file) | |
st.rerun() | |
with Files2: | |
if st.button("⬇️ Download"): | |
zip_file = create_zip_of_files(all_files) | |
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) | |
file_contents = '' | |
file_name = '' | |
next_action = '' | |
for file in all_files: | |
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) | |
with col1: | |
if st.button("🌐", key="md_"+file): | |
file_contents = load_file(file) | |
file_name = file | |
next_action = 'md' | |
st.session_state['next_action'] = next_action | |
with col2: | |
st.markdown(get_table_download_link(file), unsafe_allow_html=True) | |
with col3: | |
if st.button("📂", key="open_"+file): | |
file_contents = load_file(file) | |
file_name = file | |
next_action = 'open' | |
st.session_state['lastfilename'] = file | |
st.session_state['filename'] = file | |
st.session_state['filetext'] = file_contents | |
st.session_state['next_action'] = next_action | |
with col4: | |
if st.button("▶️", key="read_"+file): | |
file_contents = load_file(file) | |
file_name = file | |
next_action = 'search' | |
st.session_state['next_action'] = next_action | |
with col5: | |
if st.button("🗑", key="delete_"+file): | |
os.remove(file) | |
st.rerun() | |
if file_contents: | |
if next_action == 'open': | |
open1, open2 = st.columns([0.8, 0.2]) | |
with open1: | |
file_name_input = st.text_input('File Name:', file_name, key='file_name_input') | |
file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area') | |
if st.button('💾 Save File'): | |
with open(file_name_input, 'w', encoding='utf-8') as f: | |
f.write(file_content_area) | |
st.markdown(f'Saved {file_name_input} successfully.') | |
elif next_action == 'search': | |
file_content_area = st.text_area("File Contents:", file_contents, height=500) | |
user_prompt = PromptPrefix2 + file_contents | |
st.markdown(user_prompt) | |
if st.button('🔍Re-Code'): | |
search_arxiv(file_contents) | |
elif next_action == 'md': | |
st.markdown(file_contents) | |
SpeechSynthesis(file_contents) | |
if st.button("🔍Run"): | |
st.write("Running GPT logic placeholder...") | |
######################################################################################## | |
# 4) SCORING / GLOSSARIES | |
######################################################################################## | |
score_dir = "scores" | |
os.makedirs(score_dir, exist_ok=True) | |
def generate_key(label, header, idx): | |
return f"{header}_{label}_{idx}_key" | |
def update_score(key, increment=1): | |
""" | |
Track a 'score' for each glossary item or term, saved in JSON per key. | |
""" | |
score_file = os.path.join(score_dir, f"{key}.json") | |
if os.path.exists(score_file): | |
with open(score_file, "r") as file: | |
score_data = json.load(file) | |
else: | |
score_data = {"clicks": 0, "score": 0} | |
score_data["clicks"] += increment | |
score_data["score"] += increment | |
with open(score_file, "w") as file: | |
json.dump(score_data, file) | |
return score_data["score"] | |
def load_score(key): | |
file_path = os.path.join(score_dir, f"{key}.json") | |
if os.path.exists(file_path): | |
with open(file_path, "r") as file: | |
score_data = json.load(file) | |
return score_data["score"] | |
return 0 | |
def display_buttons_with_scores(num_columns_text): | |
""" | |
Show glossary items as clickable buttons that increment a 'score'. | |
""" | |
game_emojis = { | |
"Dungeons and Dragons": "🐉", | |
"Call of Cthulhu": "🐙", | |
"GURPS": "🎲", | |
"Pathfinder": "🗺️", | |
"Kindred of the East": "🌅", | |
"Changeling": "🍃", | |
} | |
topic_emojis = { | |
"Core Rulebooks": "📚", | |
"Maps & Settings": "🗺️", | |
"Game Mechanics & Tools": "⚙️", | |
"Monsters & Adversaries": "👹", | |
"Campaigns & Adventures": "📜", | |
"Creatives & Assets": "🎨", | |
"Game Master Resources": "🛠️", | |
"Lore & Background": "📖", | |
"Character Development": "🧍", | |
"Homebrew Content": "🔧", | |
"General Topics": "🌍", | |
} | |
for category, games in roleplaying_glossary.items(): | |
category_emoji = topic_emojis.get(category, "🔍") | |
st.markdown(f"## {category_emoji} {category}") | |
for game, terms in games.items(): | |
game_emoji = game_emojis.get(game, "🎮") | |
for term in terms: | |
key = f"{category}_{game}_{term}".replace(' ', '_').lower() | |
score_val = load_score(key) | |
if st.button(f"{game_emoji} {category} {game} {term} {score_val}", key=key): | |
newscore = update_score(key.replace('?', '')) | |
st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}") | |
######################################################################################## | |
# 5) IMAGES & VIDEOS | |
######################################################################################## | |
def display_images_and_wikipedia_summaries(num_columns=4): | |
"""Display .png images in a grid, referencing the name as a 'keyword'.""" | |
image_files = [f for f in os.listdir('.') if f.endswith('.png')] | |
if not image_files: | |
st.write("No PNG images found in the current directory.") | |
return | |
image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0])) | |
cols = st.columns(num_columns) | |
col_index = 0 | |
for image_file in image_files_sorted: | |
with cols[col_index % num_columns]: | |
try: | |
image = Image.open(image_file) | |
st.image(image, use_column_width=True) | |
k = image_file.split('.')[0] | |
display_glossary_entity(k) | |
image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}") | |
if image_text_input: | |
response = process_image(image_file, image_text_input) | |
st.markdown(response) | |
except: | |
st.write(f"Could not open {image_file}") | |
col_index += 1 | |
def display_videos_and_links(num_columns=4): | |
"""Displays all .mp4/.webm in a grid, plus text input for prompts.""" | |
video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))] | |
if not video_files: | |
st.write("No MP4 or WEBM videos found in the current directory.") | |
return | |
video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0])) | |
cols = st.columns(num_columns) | |
col_index = 0 | |
for video_file in video_files_sorted: | |
with cols[col_index % num_columns]: | |
k = video_file.split('.')[0] | |
st.video(video_file, format='video/mp4', start_time=0) | |
display_glossary_entity(k) | |
video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}") | |
if video_text_input: | |
try: | |
seconds_per_frame = 10 | |
process_video(video_file, seconds_per_frame) | |
except ValueError: | |
st.error("Invalid input for seconds per frame!") | |
col_index += 1 | |
######################################################################################## | |
# 6) MERMAID | |
######################################################################################## | |
def generate_mermaid_html(mermaid_code: str) -> str: | |
""" | |
Returns HTML that centers the Mermaid diagram, loading from a CDN. | |
""" | |
return f""" | |
<html> | |
<head> | |
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script> | |
<style> | |
.centered-mermaid {{ | |
display: flex; | |
justify-content: center; | |
margin: 20px auto; | |
}} | |
.mermaid {{ | |
max-width: 800px; | |
}} | |
</style> | |
</head> | |
<body> | |
<div class="mermaid centered-mermaid"> | |
{mermaid_code} | |
</div> | |
<script> | |
mermaid.initialize({{ startOnLoad: true }}); | |
</script> | |
</body> | |
</html> | |
""" | |
def append_model_param(url: str, model_selected: bool) -> str: | |
""" | |
If user checks 'Append ?model=1', we append &model=1 or ?model=1 if not present. | |
""" | |
if not model_selected: | |
return url | |
delimiter = "&" if "?" in url else "?" | |
return f"{url}{delimiter}model=1" | |
def inject_base_url(url: str) -> str: | |
""" | |
If a link does not start with http, prepend your BASE_URL | |
so it becomes an absolute link to huggingface.co/spaces/... | |
""" | |
if url.startswith("http"): | |
return url | |
return f"{BASE_URL}{url}" | |
# We use 2-parameter click lines for Mermaid 11.4.1 compatibility: | |
DEFAULT_MERMAID = r""" | |
flowchart LR | |
U((User 😎)) -- "Talk 🗣️" --> LLM[LLM Agent 🤖\nExtract Info] | |
click U "?q=U" _self | |
click LLM "?q=LLM%20Agent%20Extract%20Info" _blank | |
LLM -- "Query 🔍" --> HS[Hybrid Search 🔎\nVector+NER+Lexical] | |
click HS "?q=Hybrid%20Search%20Vector%20NER%20Lexical" _blank | |
HS -- "Reason 🤔" --> RE[Reasoning Engine 🛠️\nNeuralNetwork+Medical] | |
click RE "?q=R" _blank | |
RE -- "Link 📡" --> KG((Knowledge Graph 📚\nOntology+GAR+RAG)) | |
click KG "?q=K" _blank | |
""" | |
# New function to generate Mermaid diagram for each paper | |
def generate_mermaid_code(paper): | |
title = paper.split('|')[1].strip() | |
concepts = paper.split('\n') | |
mermaid_code = f"flowchart TD\n A[{title}]" | |
for concept in concepts[1:]: # Skip the title | |
if concept.strip(): | |
mermaid_code += f" --> {concept.strip().replace('*', '').replace(',', '').replace(' ', '')}" | |
return mermaid_code | |
######################################################################################## | |
# 7) MAIN UI | |
######################################################################################## | |
def main(): | |
st.set_page_config(page_title="Mermaid + Two-Parameter Click + LetterMap", layout="wide") | |
# Define a list of 10 slides (each with left and right pages), built from 40 paper entries. | |
slides = [ | |
{ | |
"left": """ | |
### 07 Sep 2023 | [Structured Chain-of-Thought Prompting for Code Generation](https://arxiv.org/abs/2305.06599) | [⬇️](https://arxiv.org/pdf/2305.06599) | |
*Jia Li, Ge Li, Yongmin Li, Zhi Jin* | |
### 15 Nov 2023 | [Eliminating Reasoning via Inferring with Planning: A New Framework to Guide LLMs' Non-linear Thinking](https://arxiv.org/abs/2310.12342) | [⬇️](https://arxiv.org/pdf/2310.12342) | |
*Yongqi Tong, Yifan Wang, Dawei Li, Sizhe Wang, Zi Lin, Simeng Han, Jingbo Shang* | |
""", | |
"right": """ | |
### 04 Jun 2023 | [Evaluating and Improving Tool-Augmented Computation-Intensive Math Reasoning](https://arxiv.org/abs/2306.02408) | [⬇️](https://arxiv.org/pdf/2306.02408) | |
*Beichen Zhang, Kun Zhou, Xilin Wei, Wayne Xin Zhao, Jing Sha, Shijin Wang, Ji-Rong Wen* | |
### 23 Oct 2023 | [Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks](https://arxiv.org/abs/2211.12588) | [⬇️](https://arxiv.org/pdf/2211.12588) | |
*Wenhu Chen, Xueguang Ma, Xinyi Wang, William W. Cohen* | |
""" | |
}, | |
{ | |
"left": """ | |
### 04 Jan 2024 | [Text2MDT: Extracting Medical Decision Trees from Medical Texts](https://arxiv.org/abs/2401.02034) | [⬇️](https://arxiv.org/pdf/2401.02034) | |
*Wei Zhu, Wenfeng Li, Xing Tian, Pengfei Wang, Xiaoling Wang, Jin Chen, Yuanbin Wu, Yuan Ni, Guotong Xie* | |
### 21 Dec 2023 | [Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation](https://arxiv.org/abs/2310.03780) | [⬇️](https://arxiv.org/pdf/2310.03780) | |
*Tung Phung, Victor-Alexandru Pădurean, Anjali Singh, Christopher Brooks, José Cambronero, Sumit Gulwani, Adish Singla, Gustavo Soares* | |
""", | |
"right": """ | |
### 04 Feb 2024 | [STEVE-1: A Generative Model for Text-to-Behavior in Minecraft](https://arxiv.org/abs/2306.00937) | [⬇️](https://arxiv.org/pdf/2306.00937) | |
*Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, Sheila McIlraith* | |
### 20 May 2021 | [Data-Efficient Reinforcement Learning with Self-Predictive Representations](https://arxiv.org/abs/2007.05929) | [⬇️](https://arxiv.org/pdf/2007.05929) | |
*Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman* | |
""" | |
}, | |
{ | |
"left": """ | |
### 06 Jul 2022 | [Learning Invariant World State Representations with Predictive Coding](https://arxiv.org/abs/2207.02972) | [⬇️](https://arxiv.org/pdf/2207.02972) | |
*Avi Ziskind, Sujeong Kim, and Giedrius T. Burachas* | |
### 10 Nov 2023 | [State2Explanation: Concept-Based Explanations to Benefit Agent Learning and User Understanding](https://arxiv.org/abs/2309.12482) | [⬇️](https://arxiv.org/pdf/2309.12482) | |
*Devleena Das, Sonia Chernova, Been Kim* | |
""", | |
"right": """ | |
### 17 May 2023 | [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314) | [⬇️](https://arxiv.org/pdf/2305.10314) | |
*Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji* | |
### 01 Dec 2022 | [A General Purpose Supervisory Signal for Embodied Agents](https://arxiv.org/abs/2212.01186) | [⬇️](https://arxiv.org/pdf/2212.01186) | |
*Kunal Pratap Singh, Jordi Salvador, Luca Weihs, Aniruddha Kembhavi* | |
""" | |
}, | |
{ | |
"left": """ | |
### 16 May 2023 | [RAMario: Experimental Approach to Reptile Algorithm -- Reinforcement Learning for Mario](https://arxiv.org/abs/2305.09655) | [⬇️](https://arxiv.org/pdf/2305.09655) | |
*Sanyam Jain* | |
### 31 Mar 2023 | [Pair Programming with Large Language Models for Sampling and Estimation of Copulas](https://arxiv.org/abs/2303.18116) | [⬇️](https://arxiv.org/pdf/2303.18116) | |
*Jan Górecki* | |
""", | |
"right": """ | |
### 28 Jun 2023 | [AssistGPT: A General Multi-modal Assistant that can Plan, Execute, Inspect, and Learn](https://arxiv.org/abs/2306.08640) | [⬇️](https://arxiv.org/pdf/2306.08640) | |
*Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, Mike Zheng Shou* | |
### 07 Nov 2023 | [Selective Visual Representations Improve Convergence and Generalization for Embodied AI](https://arxiv.org/abs/2311.04193) | [⬇️](https://arxiv.org/pdf/2311.04193) | |
*Ainaz Eftekhar, Kuo-Hao Zeng, Jiafei Duan, Ali Farhadi, Ani Kembhavi, Ranjay Krishna* | |
""" | |
}, | |
{ | |
"left": """ | |
### 16 Feb 2023 | [Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media](https://arxiv.org/abs/2302.08575) | [⬇️](https://arxiv.org/pdf/2302.08575) | |
*Gerhard Paaß and Sven Giesselbach* | |
### 21 Dec 2023 | [Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation](https://arxiv.org/abs/2310.03780) | [⬇️](https://arxiv.org/pdf/2310.03780) | |
*Tung Phung, Victor-Alexandru Pădurean, Anjali Singh, Christopher Brooks, José Cambronero, Sumit Gulwani, Adish Singla, Gustavo Soares* | |
""", | |
"right": """ | |
### 04 Feb 2024 | [STEVE-1: A Generative Model for Text-to-Behavior in Minecraft](https://arxiv.org/abs/2306.00937) | [⬇️](https://arxiv.org/pdf/2306.00937) | |
*Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, Sheila McIlraith* | |
### 20 May 2021 | [Data-Efficient Reinforcement Learning with Self-Predictive Representations](https://arxiv.org/abs/2007.05929) | [⬇️](https://arxiv.org/pdf/2007.05929) | |
*Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman* | |
""" | |
}, | |
{ | |
"left": """ | |
### 06 Jul 2022 | [Learning Invariant World State Representations with Predictive Coding](https://arxiv.org/abs/2207.02972) | [⬇️](https://arxiv.org/pdf/2207.02972) | |
*Avi Ziskind, Sujeong Kim, and Giedrius T. Burachas* | |
### 10 Nov 2023 | [State2Explanation: Concept-Based Explanations to Benefit Agent Learning and User Understanding](https://arxiv.org/abs/2309.12482) | [⬇️](https://arxiv.org/pdf/2309.12482) | |
*Devleena Das, Sonia Chernova, Been Kim* | |
""", | |
"right": """ | |
### 17 May 2023 | [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314) | [⬇️](https://arxiv.org/pdf/2305.10314) | |
*Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji* | |
### 01 Dec 2022 | [A General Purpose Supervisory Signal for Embodied Agents](https://arxiv.org/abs/2212.01186) | [⬇️](https://arxiv.org/pdf/2212.01186) | |
*Kunal Pratap Singh, Jordi Salvador, Luca Weihs, Aniruddha Kembhavi* | |
""" | |
}, | |
{ | |
"left": """ | |
### 16 May 2023 | [RAMario: Experimental Approach to Reptile Algorithm -- Reinforcement Learning for Mario](https://arxiv.org/abs/2305.09655) | [⬇️](https://arxiv.org/pdf/2305.09655) | |
*Sanyam Jain* | |
### 31 Mar 2023 | [Pair Programming with Large Language Models for Sampling and Estimation of Copulas](https://arxiv.org/abs/2303.18116) | [⬇️](https://arxiv.org/pdf/2303.18116) | |
*Jan Górecki* | |
""", | |
"right": """ | |
### 28 Jun 2023 | [AssistGPT: A General Multi-modal Assistant that can Plan, Execute, Inspect, and Learn](https://arxiv.org/abs/2306.08640) | [⬇️](https://arxiv.org/pdf/2306.08640) | |
*Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, Mike Zheng Shou* | |
### 07 Nov 2023 | [Selective Visual Representations Improve Convergence and Generalization for Embodied AI](https://arxiv.org/abs/2311.04193) | [⬇️](https://arxiv.org/pdf/2311.04193) | |
*Ainaz Eftekhar, Kuo-Hao Zeng, Jiafei Duan, Ali Farhadi, Ani Kembhavi, Ranjay Krishna* | |
""" | |
}, | |
{ | |
"left": """ | |
### 16 Feb 2023 | [Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media](https://arxiv.org/abs/2302.08575) | [⬇️](https://arxiv.org/pdf/2302.08575) | |
*Gerhard Paaß and Sven Giesselbach* | |
### 21 Dec 2023 | [Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation](https://arxiv.org/abs/2310.03780) | [⬇️](https://arxiv.org/pdf/2310.03780) | |
*Tung Phung, Victor-Alexandru Pădurean, Anjali Singh, Christopher Brooks, José Cambronero, Sumit Gulwani, Adish Singla, Gustavo Soares* | |
""", | |
"right": """ | |
### 04 Feb 2024 | [STEVE-1: A Generative Model for Text-to-Behavior in Minecraft](https://arxiv.org/abs/2306.00937) | [⬇️](https://arxiv.org/pdf/2306.00937) | |
*Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, Sheila McIlraith* | |
### 20 May 2021 | [Data-Efficient Reinforcement Learning with Self-Predictive Representations](https://arxiv.org/abs/2007.05929) | [⬇️](https://arxiv.org/pdf/2007.05929) | |
*Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman* | |
""" | |
} | |
] | |
# Initialize slide index in session state if not already set | |
if "slide_idx" not in st.session_state: | |
st.session_state.slide_idx = 0 | |
num_slides = len(slides) | |
current_slide = slides[st.session_state.slide_idx] | |
# Display slide header (e.g., "Slide 1 of 10") | |
st.markdown(f"## Slide {st.session_state.slide_idx + 1} of {num_slides}") | |
# Display left and right pages side by side | |
col_left, col_right = st.columns(2) | |
with col_left: | |
st.markdown("### Left Page") | |
for paper in current_slide["left"].split('\n\n'): | |
if paper.strip(): | |
st.markdown(paper, unsafe_allow_html=True) | |
mermaid_diagram = generate_mermaid_code(paper) | |
st.markdown(f"```mermaid\n{mermaid_diagram}\n```", unsafe_allow_html=True) | |
with col_right: | |
st.markdown("### Right Page") | |
for paper in current_slide["right"].split('\n\n'): | |
if paper.strip(): | |
st.markdown(paper, unsafe_allow_html=True) | |
mermaid_diagram = generate_mermaid_code(paper) | |
st.markdown(f"```mermaid\n{mermaid_diagram}\n```", unsafe_allow_html=True) | |
# Countdown timer (15 seconds) for auto-advancement | |
for remaining in range(15, 0, -1): | |
st.markdown(f"**Advancing in {remaining} seconds...**") | |
time.sleep(1) | |
# Advance to the next slide (wrap around at the end) | |
st.session_state.slide_idx = (st.session_state.slide_idx + 1) % num_slides | |
# Rerun the app to display the next slide | |
st.rerun() | |
if __name__ == "__main__": | |
main() | |