avans06's picture
The wd-tagger-images can now correctly handle duplicate image names.
624fa8c
import argparse
import os
import gradio as gr
import huggingface_hub
import numpy as np
import onnxruntime as rt
import pandas as pd
from PIL import Image
import traceback
import tempfile
import zipfile
import re
from datetime import datetime
from collections import defaultdict
TITLE = "WaifuDiffusion Tagger multiple images"
DESCRIPTION = """
Demo for the WaifuDiffusion tagger models
Example image by [ほし☆☆☆](https://www.pixiv.net/en/users/43565085)
"""
# Dataset v3 series of models:
SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3"
VIT_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-large-tagger-v3"
EVA02_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
# Dataset v2 series of models:
MOAT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2"
SWIN_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
CONV_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
# IdolSankaku series of models:
EVA02_LARGE_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-eva02-large-tagger-v1"
SWINV2_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-swinv2-tagger-v1"
# Files to download from the repos
MODEL_FILENAME = "model.onnx"
LABEL_FILENAME = "selected_tags.csv"
# LLAMA model
META_LLAMA_3_3B_REPO = "jncraton/Llama-3.2-3B-Instruct-ct2-int8"
META_LLAMA_3_8B_REPO = "avans06/Meta-Llama-3.2-8B-Instruct-ct2-int8_float16"
# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
kaomojis = [
"0_0",
"(o)_(o)",
"+_+",
"+_-",
"._.",
"<o>_<o>",
"<|>_<|>",
"=_=",
">_<",
"3_3",
"6_9",
">_o",
"@_@",
"^_^",
"o_o",
"u_u",
"x_x",
"|_|",
"||_||",
]
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--score-slider-step", type=float, default=0.05)
parser.add_argument("--score-general-threshold", type=float, default=0.35)
parser.add_argument("--score-character-threshold", type=float, default=0.85)
parser.add_argument("--share", action="store_true")
return parser.parse_args()
def load_labels(dataframe) -> list[str]:
name_series = dataframe["name"]
name_series = name_series.map(
lambda x: x.replace("_", " ") if x not in kaomojis else x
)
tag_names = name_series.tolist()
rating_indexes = list(np.where(dataframe["category"] == 9)[0])
general_indexes = list(np.where(dataframe["category"] == 0)[0])
character_indexes = list(np.where(dataframe["category"] == 4)[0])
return tag_names, rating_indexes, general_indexes, character_indexes
def mcut_threshold(probs):
"""
Maximum Cut Thresholding (MCut)
Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy
for Multi-label Classification. In 11th International Symposium, IDA 2012
(pp. 172-183).
"""
sorted_probs = probs[probs.argsort()[::-1]]
difs = sorted_probs[:-1] - sorted_probs[1:]
t = difs.argmax()
thresh = (sorted_probs[t] + sorted_probs[t + 1]) / 2
return thresh
class Llama3Reorganize:
def __init__(
self,
repoId: str,
device: str = None,
loadModel: bool = False,
):
"""Initializes the Llama model.
Args:
repoId: LLAMA model repo.
device: Device to use for computation (cpu, cuda, ipu, xpu, mkldnn, opengl, opencl,
ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia).
localFilesOnly: If True, avoid downloading the file and return the path to the
local cached file if it exists.
"""
self.modelPath = self.download_model(repoId)
if device is None:
import torch
self.totalVram = 0
if torch.cuda.is_available():
try:
deviceId = torch.cuda.current_device()
self.totalVram = torch.cuda.get_device_properties(deviceId).total_memory/(1024*1024*1024)
except Exception as e:
print(traceback.format_exc())
print("Error detect vram: " + str(e))
device = "cuda" if self.totalVram > (8 if "8B" in repoId else 4) else "cpu"
else:
device = "cpu"
self.device = device
self.system_prompt = "Please reorganize the following English labels describing a single image into a readable English article of no more than 300 words. If there are name labels, include them in the article. Since the target audience is not general, explicit content can be written in full without hesitation. No introduction is needed; directly reply with the English article:"
if loadModel:
self.load_model()
def download_model(self, repoId):
import warnings
import requests
allowPatterns = [
"config.json",
"generation_config.json",
"model.bin",
"pytorch_model.bin",
"pytorch_model.bin.index.json",
"pytorch_model-*.bin",
"sentencepiece.bpe.model",
"tokenizer.json",
"tokenizer_config.json",
"shared_vocabulary.txt",
"shared_vocabulary.json",
"special_tokens_map.json",
"spiece.model",
"vocab.json",
"model.safetensors",
"model-*.safetensors",
"model.safetensors.index.json",
"quantize_config.json",
"tokenizer.model",
"vocabulary.json",
"preprocessor_config.json",
"added_tokens.json"
]
kwargs = {"allow_patterns": allowPatterns,}
try:
return huggingface_hub.snapshot_download(repoId, **kwargs)
except (
huggingface_hub.utils.HfHubHTTPError,
requests.exceptions.ConnectionError,
) as exception:
warnings.warn(
"An error occured while synchronizing the model %s from the Hugging Face Hub:\n%s",
repoId,
exception,
)
warnings.warn(
"Trying to load the model directly from the local cache, if it exists."
)
kwargs["local_files_only"] = True
return huggingface_hub.snapshot_download(repoId, **kwargs)
def load_model(self):
import ctranslate2
import transformers
try:
print('\n\nLoading model: %s\n\n' % self.modelPath)
kwargsTokenizer = {"pretrained_model_name_or_path": self.modelPath}
kwargsModel = {"device": self.device, "model_path": self.modelPath, "compute_type": "auto"}
self.roleSystem = {"role": "system", "content": self.system_prompt}
self.Model = ctranslate2.Generator(**kwargsModel)
self.Tokenizer = transformers.AutoTokenizer.from_pretrained(**kwargsTokenizer)
self.terminators = [self.Tokenizer.eos_token_id, self.Tokenizer.convert_tokens_to_ids("<|eot_id|>")]
except Exception as e:
self.release_vram()
raise e
def release_vram(self):
try:
import torch
if torch.cuda.is_available():
if getattr(self, "Model", None) is not None and getattr(self.Model, "unload_model", None) is not None:
self.Model.unload_model()
if getattr(self, "Tokenizer", None) is not None:
del self.Tokenizer
if getattr(self, "Model", None) is not None:
del self.Model
import gc
gc.collect()
try:
torch.cuda.empty_cache()
except Exception as e:
print(traceback.format_exc())
print("\tcuda empty cache, error: " + str(e))
print("release vram end.")
except Exception as e:
print(traceback.format_exc())
print("Error release vram: " + str(e))
def reorganize(self, text: str, max_length: int = 400):
output = None
result = None
try:
input_ids = self.Tokenizer.apply_chat_template([self.roleSystem, {"role": "user", "content": text + "\n\nHere's the reorganized English article:"}], tokenize=False, add_generation_prompt=True)
source = self.Tokenizer.convert_ids_to_tokens(self.Tokenizer.encode(input_ids))
output = self.Model.generate_batch([source], max_length=max_length, max_batch_size=2, no_repeat_ngram_size=3, beam_size=2, sampling_temperature=0.7, sampling_topp=0.9, include_prompt_in_result=False, end_token=self.terminators)
target = output[0]
result = self.Tokenizer.decode(target.sequences_ids[0])
if len(result) > 2:
if result[0] == "\"" and result[len(result) - 1] == "\"":
result = result[1:-1]
elif result[0] == "'" and result[len(result) - 1] == "'":
result = result[1:-1]
elif result[0] == "「" and result[len(result) - 1] == "」":
result = result[1:-1]
elif result[0] == "『" and result[len(result) - 1] == "』":
result = result[1:-1]
except Exception as e:
print(traceback.format_exc())
print("Error reorganize text: " + str(e))
return result
class Predictor:
def __init__(self):
self.model_target_size = None
self.last_loaded_repo = None
def download_model(self, model_repo):
csv_path = huggingface_hub.hf_hub_download(
model_repo,
LABEL_FILENAME,
)
model_path = huggingface_hub.hf_hub_download(
model_repo,
MODEL_FILENAME,
)
return csv_path, model_path
def load_model(self, model_repo):
if model_repo == self.last_loaded_repo:
return
csv_path, model_path = self.download_model(model_repo)
tags_df = pd.read_csv(csv_path)
sep_tags = load_labels(tags_df)
self.tag_names = sep_tags[0]
self.rating_indexes = sep_tags[1]
self.general_indexes = sep_tags[2]
self.character_indexes = sep_tags[3]
model = rt.InferenceSession(model_path)
_, height, width, _ = model.get_inputs()[0].shape
self.model_target_size = height
self.last_loaded_repo = model_repo
self.model = model
def prepare_image(self, path):
image = Image.open(path)
image = image.convert("RGBA")
target_size = self.model_target_size
canvas = Image.new("RGBA", image.size, (255, 255, 255))
canvas.alpha_composite(image)
image = canvas.convert("RGB")
# Pad image to square
image_shape = image.size
max_dim = max(image_shape)
pad_left = (max_dim - image_shape[0]) // 2
pad_top = (max_dim - image_shape[1]) // 2
padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
padded_image.paste(image, (pad_left, pad_top))
# Resize
if max_dim != target_size:
padded_image = padded_image.resize(
(target_size, target_size),
Image.BICUBIC,
)
# Convert to numpy array
image_array = np.asarray(padded_image, dtype=np.float32)
# Convert PIL-native RGB to BGR
image_array = image_array[:, :, ::-1]
return np.expand_dims(image_array, axis=0)
def create_file(self, text: str, directory: str, fileName: str) -> str:
# Write the text to a file
with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file:
file.write(text)
return file.name
def predict(
self,
gallery,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
characters_merge_enabled,
llama3_reorganize_model_repo,
additional_tags_prepend,
additional_tags_append,
tag_results,
):
print(f"Predict load model: {model_repo}, gallery length: {len(gallery)}")
self.load_model(model_repo)
# Result
txt_infos = []
output_dir = tempfile.mkdtemp()
if not os.path.exists(output_dir):
os.makedirs(output_dir)
sorted_general_strings = ""
rating = None
character_res = None
general_res = None
if llama3_reorganize_model_repo:
print(f"Llama3 reorganize load model {llama3_reorganize_model_repo}")
llama3_reorganize = Llama3Reorganize(llama3_reorganize_model_repo, loadModel=True)
prepend_list = [tag.strip() for tag in additional_tags_prepend.split(",") if tag.strip()]
append_list = [tag.strip() for tag in additional_tags_append.split(",") if tag.strip()]
if prepend_list and append_list:
append_list = [item for item in append_list if item not in prepend_list]
# Dictionary to track counters for each filename
name_counters = defaultdict(int)
for idx, value in enumerate(gallery):
try:
image_path = value[0]
image_name = os.path.splitext(os.path.basename(image_path))[0]
# Increment the counter for the current name
name_counters[image_name] += 1
if name_counters[image_name] > 1:
image_name = f"{image_name}_{name_counters[image_name]:02d}"
image = self.prepare_image(image_path)
input_name = self.model.get_inputs()[0].name
label_name = self.model.get_outputs()[0].name
print(f"Gallery {idx}: Starting run wd model...")
preds = self.model.run([label_name], {input_name: image})[0]
labels = list(zip(self.tag_names, preds[0].astype(float)))
# First 4 labels are actually ratings: pick one with argmax
ratings_names = [labels[i] for i in self.rating_indexes]
rating = dict(ratings_names)
# Then we have general tags: pick any where prediction confidence > threshold
general_names = [labels[i] for i in self.general_indexes]
if general_mcut_enabled:
general_probs = np.array([x[1] for x in general_names])
general_thresh = mcut_threshold(general_probs)
general_res = [x for x in general_names if x[1] > general_thresh]
general_res = dict(general_res)
# Everything else is characters: pick any where prediction confidence > threshold
character_names = [labels[i] for i in self.character_indexes]
if character_mcut_enabled:
character_probs = np.array([x[1] for x in character_names])
character_thresh = mcut_threshold(character_probs)
character_thresh = max(0.15, character_thresh)
character_res = [x for x in character_names if x[1] > character_thresh]
character_res = dict(character_res)
character_list = list(character_res.keys())
sorted_general_list = sorted(
general_res.items(),
key=lambda x: x[1],
reverse=True,
)
sorted_general_list = [x[0] for x in sorted_general_list]
#Remove values from character_list that already exist in sorted_general_list
character_list = [item for item in character_list if item not in sorted_general_list]
#Remove values from sorted_general_list that already exist in prepend_list or append_list
if prepend_list:
sorted_general_list = [item for item in sorted_general_list if item not in prepend_list]
if append_list:
sorted_general_list = [item for item in sorted_general_list if item not in append_list]
sorted_general_strings = ", ".join((character_list if characters_merge_enabled else []) + prepend_list + sorted_general_list + append_list).replace("(", "\(").replace(")", "\)")
if llama3_reorganize_model_repo:
print(f"Starting reorganize with llama3...")
reorganize_strings = llama3_reorganize.reorganize(sorted_general_strings)
reorganize_strings = re.sub(r" *Title: *", "", reorganize_strings)
reorganize_strings = re.sub(r"\n+", ",", reorganize_strings)
reorganize_strings = re.sub(r",,+", ",", reorganize_strings)
sorted_general_strings += "," + reorganize_strings
txt_file = self.create_file(sorted_general_strings, output_dir, image_name + ".txt")
txt_infos.append({"path":txt_file, "name": image_name + ".txt"})
tag_results[image_path] = { "strings": sorted_general_strings, "rating": rating, "character_res": character_res, "general_res": general_res }
except Exception as e:
print(traceback.format_exc())
print("Error predict: " + str(e))
# Result
download = []
if txt_infos is not None and len(txt_infos) > 0:
downloadZipPath = os.path.join(output_dir, "images-tagger-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip")
with zipfile.ZipFile(downloadZipPath, 'w', zipfile.ZIP_DEFLATED) as taggers_zip:
for info in txt_infos:
# Get file name from lookup
taggers_zip.write(info["path"], arcname=info["name"])
download.append(downloadZipPath)
if llama3_reorganize_model_repo:
llama3_reorganize.release_vram()
del llama3_reorganize
print("Predict is complete.")
return download, sorted_general_strings, rating, character_res, general_res, tag_results
def get_selection_from_gallery(gallery: list, tag_results: dict, selected_state: gr.SelectData):
if not selected_state:
return selected_state
tag_result = { "strings": "", "rating": "", "character_res": "", "general_res": "" }
if selected_state.value["image"]["path"] in tag_results:
tag_result = tag_results[selected_state.value["image"]["path"]]
return (selected_state.value["image"]["path"], selected_state.value["caption"]), tag_result["strings"], tag_result["rating"], tag_result["character_res"], tag_result["general_res"]
def append_gallery(gallery: list, image: str):
if gallery is None:
gallery = []
if not image:
return gallery, None
gallery.append(image)
return gallery, None
def extend_gallery(gallery: list, images):
if gallery is None:
gallery = []
if not images:
return gallery
# Combine the new images with the existing gallery images
gallery.extend(images)
return gallery
def remove_image_from_gallery(gallery: list, selected_image: str):
if not gallery or not selected_image:
return gallery
selected_image = eval(selected_image)
# Remove the selected image from the gallery
if selected_image in gallery:
gallery.remove(selected_image)
return gallery
def main():
args = parse_args()
predictor = Predictor()
dropdown_list = [
EVA02_LARGE_MODEL_DSV3_REPO,
SWINV2_MODEL_DSV3_REPO,
CONV_MODEL_DSV3_REPO,
VIT_MODEL_DSV3_REPO,
VIT_LARGE_MODEL_DSV3_REPO,
# ---
MOAT_MODEL_DSV2_REPO,
SWIN_MODEL_DSV2_REPO,
CONV_MODEL_DSV2_REPO,
CONV2_MODEL_DSV2_REPO,
VIT_MODEL_DSV2_REPO,
# ---
SWINV2_MODEL_IS_DSV1_REPO,
EVA02_LARGE_MODEL_IS_DSV1_REPO,
]
llama_list = [
META_LLAMA_3_3B_REPO,
META_LLAMA_3_8B_REPO,
]
with gr.Blocks(title=TITLE) as demo:
gr.Markdown(
value=f"<h1 style='text-align: center; margin-bottom: 1rem'>{TITLE}</h1>"
)
gr.Markdown(value=DESCRIPTION)
with gr.Row():
with gr.Column():
submit = gr.Button(value="Submit", variant="primary", size="lg")
with gr.Column(variant="panel"):
# Create an Image component for uploading images
image_input = gr.Image(label="Upload an Image or clicking paste from clipboard button", type="filepath", sources=["upload", "clipboard"], height=150)
gallery = gr.Gallery(columns=5, rows=5, show_share_button=False, interactive=True, height="500px", label="Gallery that displaying a grid of images")
with gr.Row():
upload_button = gr.UploadButton("Upload multiple images", file_types=["image"], file_count="multiple", size="sm")
remove_button = gr.Button("Remove Selected Image", size="sm")
model_repo = gr.Dropdown(
dropdown_list,
value=EVA02_LARGE_MODEL_DSV3_REPO,
label="Model",
)
with gr.Row():
general_thresh = gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.score_general_threshold,
label="General Tags Threshold",
scale=3,
)
general_mcut_enabled = gr.Checkbox(
value=False,
label="Use MCut threshold",
scale=1,
)
with gr.Row():
character_thresh = gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.score_character_threshold,
label="Character Tags Threshold",
scale=3,
)
character_mcut_enabled = gr.Checkbox(
value=False,
label="Use MCut threshold",
scale=1,
)
with gr.Row():
characters_merge_enabled = gr.Checkbox(
value=True,
label="Merge characters into the string output",
scale=1,
)
with gr.Row():
llama3_reorganize_model_repo = gr.Dropdown(
[None] + llama_list,
value=None,
label="Llama3 Model",
info="Use the Llama3 model to reorganize the article (Note: very slow)",
)
with gr.Row():
additional_tags_prepend = gr.Text(label="Prepend Additional tags (comma split)")
additional_tags_append = gr.Text(label="Append Additional tags (comma split)")
with gr.Row():
clear = gr.ClearButton(
components=[
gallery,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
characters_merge_enabled,
llama3_reorganize_model_repo,
additional_tags_prepend,
additional_tags_append,
],
variant="secondary",
size="lg",
)
with gr.Column(variant="panel"):
download_file = gr.File(label="Output (Download)")
sorted_general_strings = gr.Textbox(label="Output (string)", show_label=True, show_copy_button=True)
rating = gr.Label(label="Rating")
character_res = gr.Label(label="Output (characters)")
general_res = gr.Label(label="Output (tags)")
clear.add(
[
download_file,
sorted_general_strings,
rating,
character_res,
general_res,
]
)
tag_results = gr.State({})
# Define the event listener to add the uploaded image to the gallery
image_input.change(append_gallery, inputs=[gallery, image_input], outputs=[gallery, image_input])
# When the upload button is clicked, add the new images to the gallery
upload_button.upload(extend_gallery, inputs=[gallery, upload_button], outputs=gallery)
# Event to update the selected image when an image is clicked in the gallery
selected_image = gr.Textbox(label="Selected Image", visible=False)
gallery.select(get_selection_from_gallery, inputs=[gallery, tag_results], outputs=[selected_image, sorted_general_strings, rating, character_res, general_res])
# Event to remove a selected image from the gallery
remove_button.click(remove_image_from_gallery, inputs=[gallery, selected_image], outputs=gallery)
submit.click(
predictor.predict,
inputs=[
gallery,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
characters_merge_enabled,
llama3_reorganize_model_repo,
additional_tags_prepend,
additional_tags_append,
tag_results,
],
outputs=[download_file, sorted_general_strings, rating, character_res, general_res, tag_results,],
)
gr.Examples(
[["power.jpg", SWINV2_MODEL_DSV3_REPO, 0.35, False, 0.85, False]],
inputs=[
image_input,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
],
)
demo.queue(max_size=2)
demo.launch(inbrowser=True)
if __name__ == "__main__":
main()