|
import torch.nn as nn |
|
|
|
from torchvision.models.resnet import BasicBlock |
|
|
|
|
|
class ResNet_FeatureExtractor(nn.Module): |
|
""" FeatureExtractor of FAN (http://openaccess.thecvf.com/content_ICCV_2017/papers/Cheng_Focusing_Attention_Towards_ICCV_2017_paper.pdf) """ |
|
|
|
def __init__(self, input_channel, output_channel=512): |
|
super().__init__() |
|
self.ConvNet = ResNet(input_channel, output_channel, BasicBlock, [1, 2, 5, 3]) |
|
|
|
def forward(self, input): |
|
return self.ConvNet(input) |
|
|
|
|
|
class ResNet(nn.Module): |
|
|
|
def __init__(self, input_channel, output_channel, block, layers): |
|
super().__init__() |
|
|
|
self.output_channel_block = [int(output_channel / 4), int(output_channel / 2), output_channel, output_channel] |
|
|
|
self.inplanes = int(output_channel / 8) |
|
self.conv0_1 = nn.Conv2d(input_channel, int(output_channel / 16), |
|
kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn0_1 = nn.BatchNorm2d(int(output_channel / 16)) |
|
self.conv0_2 = nn.Conv2d(int(output_channel / 16), self.inplanes, |
|
kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn0_2 = nn.BatchNorm2d(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) |
|
self.layer1 = self._make_layer(block, self.output_channel_block[0], layers[0]) |
|
self.conv1 = nn.Conv2d(self.output_channel_block[0], self.output_channel_block[ |
|
0], kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(self.output_channel_block[0]) |
|
|
|
self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) |
|
self.layer2 = self._make_layer(block, self.output_channel_block[1], layers[1], stride=1) |
|
self.conv2 = nn.Conv2d(self.output_channel_block[1], self.output_channel_block[ |
|
1], kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(self.output_channel_block[1]) |
|
|
|
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=(2, 1), padding=(0, 1)) |
|
self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2], stride=1) |
|
self.conv3 = nn.Conv2d(self.output_channel_block[2], self.output_channel_block[ |
|
2], kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(self.output_channel_block[2]) |
|
|
|
self.layer4 = self._make_layer(block, self.output_channel_block[3], layers[3], stride=1) |
|
self.conv4_1 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[ |
|
3], kernel_size=2, stride=(2, 1), padding=(0, 1), bias=False) |
|
self.bn4_1 = nn.BatchNorm2d(self.output_channel_block[3]) |
|
self.conv4_2 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[ |
|
3], kernel_size=2, stride=1, padding=0, bias=False) |
|
self.bn4_2 = nn.BatchNorm2d(self.output_channel_block[3]) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv0_1(x) |
|
x = self.bn0_1(x) |
|
x = self.relu(x) |
|
x = self.conv0_2(x) |
|
x = self.bn0_2(x) |
|
x = self.relu(x) |
|
|
|
x = self.maxpool1(x) |
|
x = self.layer1(x) |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
|
|
x = self.maxpool2(x) |
|
x = self.layer2(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.relu(x) |
|
|
|
x = self.maxpool3(x) |
|
x = self.layer3(x) |
|
x = self.conv3(x) |
|
x = self.bn3(x) |
|
x = self.relu(x) |
|
|
|
x = self.layer4(x) |
|
x = self.conv4_1(x) |
|
x = self.bn4_1(x) |
|
x = self.relu(x) |
|
x = self.conv4_2(x) |
|
x = self.bn4_2(x) |
|
x = self.relu(x) |
|
|
|
return x |
|
|