|
import math |
|
from typing import Optional, Callable |
|
|
|
import torch.nn as nn |
|
from torchvision.models import resnet |
|
|
|
|
|
class BasicBlock(resnet.BasicBlock): |
|
|
|
def __init__(self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, |
|
groups: int = 1, base_width: int = 64, dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None) -> None: |
|
super().__init__(inplanes, planes, stride, downsample, groups, base_width, dilation, norm_layer) |
|
self.conv1 = resnet.conv1x1(inplanes, planes) |
|
self.conv2 = resnet.conv3x3(planes, planes, stride) |
|
|
|
|
|
class ResNet(nn.Module): |
|
|
|
def __init__(self, block, layers): |
|
super().__init__() |
|
self.inplanes = 32 |
|
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, |
|
bias=False) |
|
self.bn1 = nn.BatchNorm2d(32) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.layer1 = self._make_layer(block, 32, layers[0], stride=2) |
|
self.layer2 = self._make_layer(block, 64, layers[1], stride=1) |
|
self.layer3 = self._make_layer(block, 128, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 256, layers[3], stride=1) |
|
self.layer5 = self._make_layer(block, 512, layers[4], stride=1) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = self.layer5(x) |
|
return x |
|
|
|
|
|
def resnet45(): |
|
return ResNet(BasicBlock, [3, 4, 6, 6, 3]) |
|
|