Spaces:
Runtime error
Runtime error
File size: 2,495 Bytes
6c14077 0ba78e9 8dec3b6 0ba78e9 6c14077 0ba78e9 6c14077 0ba78e9 6c14077 0ba78e9 6c14077 0ba78e9 8dec3b6 0ba78e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
from typing import Dict, Union
import requests
from huggingface_hub import DatasetFilter, HfApi, ModelFilter
AUTOTRAIN_TASK_TO_HUB_TASK = {
"binary_classification": "text-classification",
"multi_class_classification": "text-classification",
# "multi_label_classification": "text-classification", # Not fully supported in AutoTrain
"entity_extraction": "token-classification",
"extractive_question_answering": "question-answering",
"translation": "translation",
"summarization": "summarization",
# "single_column_regression": 10,
}
HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()}
api = HfApi()
def get_auth_headers(token: str, prefix: str = "autonlp"):
return {"Authorization": f"{prefix} {token}"}
def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response:
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
try:
response = requests.post(
url=domain + path, json=payload, headers=get_auth_headers(token=token), allow_redirects=True, params=params
)
except requests.exceptions.ConnectionError:
print("β Failed to reach AutoNLP API, check your internet connection")
response.raise_for_status()
return response
def http_get(path: str, domain: str, token: str = None, params: dict = None) -> requests.Response:
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
try:
response = requests.get(
url=domain + path, headers=get_auth_headers(token=token), allow_redirects=True, params=params
)
except requests.exceptions.ConnectionError:
print("β Failed to reach AutoNLP API, check your internet connection")
response.raise_for_status()
return response
def get_metadata(dataset_name: str) -> Union[Dict, None]:
filt = DatasetFilter(dataset_name=dataset_name)
data = api.list_datasets(filter=filt, full=True)
if data[0].cardData is not None and "train-eval-index" in data[0].cardData.keys():
return data[0].cardData["train-eval-index"]
else:
return None
def get_compatible_models(task, dataset_name):
filt = ModelFilter(task=AUTOTRAIN_TASK_TO_HUB_TASK[task], trained_dataset=dataset_name, library="transformers")
compatible_models = api.list_models(filter=filt)
return [model.modelId for model in compatible_models]
|