aupfe08 commited on
Commit
8702f2d
·
1 Parent(s): 0c80cb0

Update requirements.txt

Browse files
Files changed (1) hide show
  1. requirements.txt +7 -248
requirements.txt CHANGED
@@ -1,248 +1,7 @@
1
- import gradio as gr
2
-
3
- from matplotlib import gridspec
4
- import matplotlib.pyplot as plt
5
- import numpy as np
6
- from PIL import Image
7
- import tensorflow as tf
8
- from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
-
10
- feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
- "nvidia/segformer-b5-finetuned-ade-640-640"
12
- )
13
- model = TFSegformerForSemanticSegmentation.from_pretrained(
14
- "nvidia/segformer-b5-finetuned-ade-640-640"
15
- )
16
-
17
- def ade_palette():
18
- """ADE20K palette that maps each class to RGB values."""
19
- return [
20
- [120, 120, 120],
21
- [180, 120, 120],
22
- [6, 230, 230],
23
- [80, 50, 50],
24
- [4, 200, 3],
25
- [120, 120, 80],
26
- [140, 140, 140],
27
- [204, 5, 255],
28
- [230, 230, 230],
29
- [4, 250, 7],
30
- [224, 5, 255],
31
- [235, 255, 7],
32
- [150, 5, 61],
33
- [120, 120, 70],
34
- [8, 255, 51],
35
- [255, 6, 82],
36
- [143, 255, 140],
37
- [204, 255, 4],
38
- [255, 51, 7],
39
- [204, 70, 3],
40
- [0, 102, 200],
41
- [61, 230, 250],
42
- [255, 6, 51],
43
- [11, 102, 255],
44
- [255, 7, 71],
45
- [255, 9, 224],
46
- [9, 7, 230],
47
- [220, 220, 220],
48
- [255, 9, 92],
49
- [112, 9, 255],
50
- [8, 255, 214],
51
- [7, 255, 224],
52
- [255, 184, 6],
53
- [10, 255, 71],
54
- [255, 41, 10],
55
- [7, 255, 255],
56
- [224, 255, 8],
57
- [102, 8, 255],
58
- [255, 61, 6],
59
- [255, 194, 7],
60
- [255, 122, 8],
61
- [0, 255, 20],
62
- [255, 8, 41],
63
- [255, 5, 153],
64
- [6, 51, 255],
65
- [235, 12, 255],
66
- [160, 150, 20],
67
- [0, 163, 255],
68
- [140, 140, 140],
69
- [250, 10, 15],
70
- [20, 255, 0],
71
- [31, 255, 0],
72
- [255, 31, 0],
73
- [255, 224, 0],
74
- [153, 255, 0],
75
- [0, 0, 255],
76
- [255, 71, 0],
77
- [0, 235, 255],
78
- [0, 173, 255],
79
- [31, 0, 255],
80
- [11, 200, 200],
81
- [255, 82, 0],
82
- [0, 255, 245],
83
- [0, 61, 255],
84
- [0, 255, 112],
85
- [0, 255, 133],
86
- [255, 0, 0],
87
- [255, 163, 0],
88
- [255, 102, 0],
89
- [194, 255, 0],
90
- [0, 143, 255],
91
- [51, 255, 0],
92
- [0, 82, 255],
93
- [0, 255, 41],
94
- [0, 255, 173],
95
- [10, 0, 255],
96
- [173, 255, 0],
97
- [0, 255, 153],
98
- [255, 92, 0],
99
- [255, 0, 255],
100
- [255, 0, 245],
101
- [255, 0, 102],
102
- [255, 173, 0],
103
- [255, 0, 20],
104
- [255, 184, 184],
105
- [0, 31, 255],
106
- [0, 255, 61],
107
- [0, 71, 255],
108
- [255, 0, 204],
109
- [0, 255, 194],
110
- [0, 255, 82],
111
- [0, 10, 255],
112
- [0, 112, 255],
113
- [51, 0, 255],
114
- [0, 194, 255],
115
- [0, 122, 255],
116
- [0, 255, 163],
117
- [255, 153, 0],
118
- [0, 255, 10],
119
- [255, 112, 0],
120
- [143, 255, 0],
121
- [82, 0, 255],
122
- [163, 255, 0],
123
- [255, 235, 0],
124
- [8, 184, 170],
125
- [133, 0, 255],
126
- [0, 255, 92],
127
- [184, 0, 255],
128
- [255, 0, 31],
129
- [0, 184, 255],
130
- [0, 214, 255],
131
- [255, 0, 112],
132
- [92, 255, 0],
133
- [0, 224, 255],
134
- [112, 224, 255],
135
- [70, 184, 160],
136
- [163, 0, 255],
137
- [153, 0, 255],
138
- [71, 255, 0],
139
- [255, 0, 163],
140
- [255, 204, 0],
141
- [255, 0, 143],
142
- [0, 255, 235],
143
- [133, 255, 0],
144
- [255, 0, 235],
145
- [245, 0, 255],
146
- [255, 0, 122],
147
- [255, 245, 0],
148
- [10, 190, 212],
149
- [214, 255, 0],
150
- [0, 204, 255],
151
- [20, 0, 255],
152
- [255, 255, 0],
153
- [0, 153, 255],
154
- [0, 41, 255],
155
- [0, 255, 204],
156
- [41, 0, 255],
157
- [41, 255, 0],
158
- [173, 0, 255],
159
- [0, 245, 255],
160
- [71, 0, 255],
161
- [122, 0, 255],
162
- [0, 255, 184],
163
- [0, 92, 255],
164
- [184, 255, 0],
165
- [0, 133, 255],
166
- [255, 214, 0],
167
- [25, 194, 194],
168
- [102, 255, 0],
169
- [92, 0, 255],
170
- ]
171
-
172
- labels_list = []
173
-
174
- with open(r'labels.txt', 'r') as fp:
175
- for line in fp:
176
- labels_list.append(line[:-1])
177
-
178
- colormap = np.asarray(ade_palette())
179
-
180
- def label_to_color_image(label):
181
- if label.ndim != 2:
182
- raise ValueError("Expect 2-D input label")
183
-
184
- if np.max(label) >= len(colormap):
185
- raise ValueError("label value too large.")
186
-
187
- return colormap[label]
188
-
189
- def draw_plot(pred_img, seg):
190
- fig = plt.figure(figsize=(20, 15))
191
-
192
- grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
193
-
194
- plt.subplot(grid_spec[0])
195
- plt.imshow(pred_img)
196
- plt.axis('off')
197
-
198
- LABEL_NAMES = np.asarray(labels_list)
199
- FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
200
- FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
201
-
202
- unique_labels = np.unique(seg.numpy().astype("uint8"))
203
- ax = plt.subplot(grid_spec[1])
204
- plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
205
- ax.yaxis.tick_right()
206
- plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
207
- plt.xticks([], [])
208
- ax.tick_params(width=0.0, labelsize=25)
209
- return fig
210
-
211
- def sepia(input_img):
212
- input_img = Image.fromarray(input_img)
213
-
214
- inputs = feature_extractor(images=input_img, return_tensors="tf")
215
- outputs = model(**inputs)
216
- logits = outputs.logits
217
-
218
- logits = tf.transpose(logits, [0, 2, 3, 1])
219
- logits = tf.image.resize(
220
- logits, input_img.size[::-1]
221
- ) # We reverse the shape of `image` because `image.size` returns width and height.
222
- seg = tf.math.argmax(logits, axis=-1)[0]
223
-
224
- color_seg = np.zeros(
225
- (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
226
- ) # height, width, 3
227
-
228
- for label, color in enumerate(colormap):
229
- color_seg[seg == label, :] = color
230
-
231
- # Convert to BGR
232
- color_seg = color_seg[..., ::-1]
233
-
234
- # Show image + mask
235
- pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
236
- pred_img = pred_img.astype(np.uint8)
237
-
238
- fig = draw_plot(pred_img, seg)
239
- return fig
240
-
241
- demo = gr.Interface(sepia,
242
- gr.Image(shape=(200, 200)),
243
- outputs=['plot'],
244
- # examples=["ADE_val_00000001.jpeg"],
245
- allow_flagging='never')
246
-
247
- demo.launch()
248
-
 
1
+ numpy==1.23.0
2
+ pillow==9.1.1
3
+ matplotlib==3.5.2
4
+ tensorflow==2.9.0
5
+ torch==1.12.0
6
+ git+https://github.com/huggingface/transformers
7
+ datasets==2.3.2