Spaces:
Runtime error
Runtime error
Debug
Browse files
app.py
CHANGED
@@ -136,7 +136,8 @@ def process_func(x: np.ndarray, sampling_rate: int) -> dict:
|
|
136 |
# run through model
|
137 |
with torch.no_grad():
|
138 |
y = model(y)
|
139 |
-
|
|
|
140 |
# Age-gender model
|
141 |
y = torch.hstack([y[1], y[2]])
|
142 |
else:
|
@@ -181,52 +182,25 @@ def recognize(input_file):
|
|
181 |
return process_func(signal, target_rate)
|
182 |
|
183 |
|
184 |
-
outputs = gr.Label()
|
185 |
-
title = "audEERING age and gender recognition"
|
186 |
description = (
|
187 |
-
"
|
188 |
-
f"[
|
189 |
-
"
|
190 |
-
|
191 |
-
"is used for expression recognition."
|
192 |
)
|
193 |
-
allow_flagging = "never"
|
194 |
-
|
195 |
-
# microphone = gr.Interface(
|
196 |
-
# fn=recognize,
|
197 |
-
# inputs=gr.Audio(sources="microphone", type="filepath"),
|
198 |
-
# outputs=outputs,
|
199 |
-
# title=title,
|
200 |
-
# description=description,
|
201 |
-
# allow_flagging=allow_flagging,
|
202 |
-
# )
|
203 |
-
|
204 |
-
# file = gr.Interface(
|
205 |
-
# fn=recognize,
|
206 |
-
# inputs=gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
207 |
-
# outputs=outputs,
|
208 |
-
# title=title,
|
209 |
-
# description=description,
|
210 |
-
# allow_flagging=allow_flagging,
|
211 |
-
# )
|
212 |
-
#
|
213 |
-
# # demo = gr.TabbedInterface([microphone, file], ["Microphone", "Audio file"])
|
214 |
-
# # demo.queue().launch()
|
215 |
-
# # demo.launch()
|
216 |
-
# file.launch()
|
217 |
-
|
218 |
|
219 |
with gr.Blocks() as demo:
|
220 |
gr.Markdown(description)
|
221 |
with gr.Tab(label="Speech analysis"):
|
222 |
with gr.Row():
|
223 |
with gr.Column():
|
224 |
-
gr.Markdown(
|
225 |
input = gr.Audio(
|
226 |
sources=["upload", "microphone"],
|
227 |
type="filepath",
|
228 |
label="Audio input",
|
229 |
)
|
|
|
230 |
submit_btn = gr.Button(value="Submit")
|
231 |
with gr.Column():
|
232 |
output_age = gr.Textbox(label="Age")
|
|
|
136 |
# run through model
|
137 |
with torch.no_grad():
|
138 |
y = model(y)
|
139 |
+
print(f"{y.shape=}")
|
140 |
+
if y.shape[0] == 2:
|
141 |
# Age-gender model
|
142 |
y = torch.hstack([y[1], y[2]])
|
143 |
else:
|
|
|
182 |
return process_func(signal, target_rate)
|
183 |
|
184 |
|
|
|
|
|
185 |
description = (
|
186 |
+
"Recognize "
|
187 |
+
f"[age and gender](https://huggingface.co/{age_gender_model_name}) "
|
188 |
+
f"and [expression](https://huggingface.co/{expression_model_name}) "
|
189 |
+
"of an audio file or microphone recording."
|
|
|
190 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
with gr.Blocks() as demo:
|
193 |
gr.Markdown(description)
|
194 |
with gr.Tab(label="Speech analysis"):
|
195 |
with gr.Row():
|
196 |
with gr.Column():
|
197 |
+
gr.Markdown(description)
|
198 |
input = gr.Audio(
|
199 |
sources=["upload", "microphone"],
|
200 |
type="filepath",
|
201 |
label="Audio input",
|
202 |
)
|
203 |
+
gr.Markdown("Only the first second of the audio is processed.")
|
204 |
submit_btn = gr.Button(value="Submit")
|
205 |
with gr.Column():
|
206 |
output_age = gr.Textbox(label="Age")
|