hagenw commited on
Commit
963cdb8
·
1 Parent(s): 7454896
Files changed (1) hide show
  1. app.py +8 -34
app.py CHANGED
@@ -136,7 +136,8 @@ def process_func(x: np.ndarray, sampling_rate: int) -> dict:
136
  # run through model
137
  with torch.no_grad():
138
  y = model(y)
139
- if len(y) == 2:
 
140
  # Age-gender model
141
  y = torch.hstack([y[1], y[2]])
142
  else:
@@ -181,52 +182,25 @@ def recognize(input_file):
181
  return process_func(signal, target_rate)
182
 
183
 
184
- outputs = gr.Label()
185
- title = "audEERING age and gender recognition"
186
  description = (
187
- "Speech analysis of an audio file or microphone recording. \n"
188
- f"[{age_gender_model_name}](https://huggingface.co/{age_gender_model_name}) "
189
- "is used for age and gender recognition, "
190
- f"[{expression_model_name}](https://huggingface.co/{expression_model_name}) "
191
- "is used for expression recognition."
192
  )
193
- allow_flagging = "never"
194
-
195
- # microphone = gr.Interface(
196
- # fn=recognize,
197
- # inputs=gr.Audio(sources="microphone", type="filepath"),
198
- # outputs=outputs,
199
- # title=title,
200
- # description=description,
201
- # allow_flagging=allow_flagging,
202
- # )
203
-
204
- # file = gr.Interface(
205
- # fn=recognize,
206
- # inputs=gr.Audio(sources="upload", type="filepath", label="Audio file"),
207
- # outputs=outputs,
208
- # title=title,
209
- # description=description,
210
- # allow_flagging=allow_flagging,
211
- # )
212
- #
213
- # # demo = gr.TabbedInterface([microphone, file], ["Microphone", "Audio file"])
214
- # # demo.queue().launch()
215
- # # demo.launch()
216
- # file.launch()
217
-
218
 
219
  with gr.Blocks() as demo:
220
  gr.Markdown(description)
221
  with gr.Tab(label="Speech analysis"):
222
  with gr.Row():
223
  with gr.Column():
224
- gr.Markdown("Only the first second of the audio is processed.")
225
  input = gr.Audio(
226
  sources=["upload", "microphone"],
227
  type="filepath",
228
  label="Audio input",
229
  )
 
230
  submit_btn = gr.Button(value="Submit")
231
  with gr.Column():
232
  output_age = gr.Textbox(label="Age")
 
136
  # run through model
137
  with torch.no_grad():
138
  y = model(y)
139
+ print(f"{y.shape=}")
140
+ if y.shape[0] == 2:
141
  # Age-gender model
142
  y = torch.hstack([y[1], y[2]])
143
  else:
 
182
  return process_func(signal, target_rate)
183
 
184
 
 
 
185
  description = (
186
+ "Recognize "
187
+ f"[age and gender](https://huggingface.co/{age_gender_model_name}) "
188
+ f"and [expression](https://huggingface.co/{expression_model_name}) "
189
+ "of an audio file or microphone recording."
 
190
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
 
192
  with gr.Blocks() as demo:
193
  gr.Markdown(description)
194
  with gr.Tab(label="Speech analysis"):
195
  with gr.Row():
196
  with gr.Column():
197
+ gr.Markdown(description)
198
  input = gr.Audio(
199
  sources=["upload", "microphone"],
200
  type="filepath",
201
  label="Audio input",
202
  )
203
+ gr.Markdown("Only the first second of the audio is processed.")
204
  submit_btn = gr.Button(value="Submit")
205
  with gr.Column():
206
  output_age = gr.Textbox(label="Age")