speech-analysis / app.py
hagenw's picture
Try a single input component
3af8c73
raw
history blame
6.3 kB
import gradio as gr
import numpy as np
import spaces
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
import audiofile
import audresample
model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender"
duration = 1 # limit processing of audio
class ModelHead(nn.Module):
r"""Classification head."""
def __init__(self, config, num_labels):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class AgeGenderModel(Wav2Vec2PreTrainedModel):
r"""Speech emotion classifier."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.age = ModelHead(config, 1)
self.gender = ModelHead(config, 3)
self.init_weights()
def forward(
self,
input_values,
):
outputs = self.wav2vec2(input_values)
hidden_states = outputs[0]
hidden_states = torch.mean(hidden_states, dim=1)
logits_age = self.age(hidden_states)
logits_gender = torch.softmax(self.gender(hidden_states), dim=1)
return hidden_states, logits_age, logits_gender
# load model from hub
device = 0 if torch.cuda.is_available() else "cpu"
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = AgeGenderModel.from_pretrained(model_name)
def process_func(x: np.ndarray, sampling_rate: int) -> dict:
r"""Predict age and gender or extract embeddings from raw audio signal."""
# run through processor to normalize signal
# always returns a batch, so we just get the first entry
# then we put it on the device
y = processor(x, sampling_rate=sampling_rate)
y = y['input_values'][0]
y = y.reshape(1, -1)
y = torch.from_numpy(y).to(device)
# run through model
with torch.no_grad():
y = model(y)
y = torch.hstack([y[1], y[2]])
# convert to numpy
y = y.detach().cpu().numpy()
# convert to dict
y = {
"age": 100 * y[0][0],
"female": y[0][1],
"male": y[0][2],
"child": y[0][3],
}
return y
@spaces.GPU
def recognize(input_file):
# sampling_rate, signal = input_microphone
# signal = signal.astype(np.float32, order="C") / 32768.0
if input_file:
signal, sampling_rate = audiofile.read(file, duration=duration)
else:
raise gr.Error(
"No audio file submitted! "
"Please upload or record an audio file "
"before submitting your request."
)
# Resample to sampling rate supported byu the models
target_rate = 16000
signal = audresample.resample(signal, sampling_rate, target_rate)
age_gender = process_func(signal, target_rate)
age = f"{round(age_gender['age'])} years"
gender = {k: v for k, v in age_gender.items() if k != "age"}
return age, gender
outputs = gr.Label()
title = "audEERING age and gender recognition"
description = (
"Recognize age and gender of a microphone recording or audio file. "
f"Demo uses the checkpoint [{model_name}](https://huggingface.co/{model_name})."
)
allow_flagging = "never"
# microphone = gr.Interface(
# fn=recognize,
# inputs=gr.Audio(sources="microphone", type="filepath"),
# outputs=outputs,
# title=title,
# description=description,
# allow_flagging=allow_flagging,
# )
# file = gr.Interface(
# fn=recognize,
# inputs=gr.Audio(sources="upload", type="filepath", label="Audio file"),
# outputs=outputs,
# title=title,
# description=description,
# allow_flagging=allow_flagging,
# )
#
# # demo = gr.TabbedInterface([microphone, file], ["Microphone", "Audio file"])
# # demo.queue().launch()
# # demo.launch()
# file.launch()
def toggle_input(choice):
if choice == "microphone":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
with gr.Blocks() as demo:
gr.Markdown(description)
with gr.Tab(label="Input"):
with gr.Row():
with gr.Column():
# input_selection = gr.Radio(
# ["microphone", "file"],
# value="file",
# label="How would you like to upload your audio?",
# )
input_file = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Audio file",
)
# input_microphone = gr.Audio(
# sources="microphone",
# type="filepath",
# label="Microphone",
# )
# output_selector = gr.Dropdown(
# choices=["age", "gender"],
# label="Output",
# value="age",
# )
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_age = gr.Textbox(label="Age")
output_gender = gr.Label(label="gender")
# def update_output(output_selector):
# """Set different output types for different model outputs."""
# if output_selector == "gender":
# output = gr.Label(label="gender")
# return output
# output_selector.input(update_output, output_selector, output)
outputs = [output_age, output_gender]
# input_selection.change(toggle_input, input_selection, inputs)
# input_microphone.change(lambda x: x, input_microphone, outputs)
# input_file.change(lambda x: x, input_file, outputs)
submit_btn.click(recognize, input_file, outputs)
demo.launch(debug=True)