File size: 6,298 Bytes
c6c2fd0
 
 
 
 
 
 
 
 
 
4923d25
c6c2fd0
 
d1ab157
 
 
 
c6c2fd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e2ced3
 
 
 
 
 
c6c2fd0
 
 
 
 
3af8c73
 
 
 
f6665ab
4b3a974
c6c2fd0
 
 
 
 
f6665ab
4923d25
 
f6665ab
4923d25
416b735
 
 
c6c2fd0
 
360a832
c6c2fd0
 
 
d1ab157
c6c2fd0
 
 
0aad17a
 
 
 
 
 
 
 
c6c2fd0
d1ab157
 
 
 
 
 
 
 
dabc543
d1ab157
 
 
 
 
85527c3
 
 
 
 
 
 
d1ab157
 
 
 
 
3af8c73
 
 
 
 
416b735
3af8c73
416b735
 
d1ab157
3af8c73
 
 
 
 
85527c3
416b735
 
 
 
 
d1ab157
 
416b735
 
d6e9096
416b735
 
 
 
 
d6e9096
416b735
d1ab157
85527c3
 
3af8c73
 
 
d1ab157
3af8c73
f6665ab
 
d1ab157
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import gradio as gr
import numpy as np
import spaces
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel

import audiofile
import audresample


model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender"
duration = 1  # limit processing of audio


class ModelHead(nn.Module):
    r"""Classification head."""

    def __init__(self, config, num_labels):

        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.final_dropout)
        self.out_proj = nn.Linear(config.hidden_size, num_labels)

    def forward(self, features, **kwargs):

        x = features
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)

        return x


class AgeGenderModel(Wav2Vec2PreTrainedModel):
    r"""Speech emotion classifier."""

    def __init__(self, config):

        super().__init__(config)

        self.config = config
        self.wav2vec2 = Wav2Vec2Model(config)
        self.age = ModelHead(config, 1)
        self.gender = ModelHead(config, 3)
        self.init_weights()

    def forward(
            self,
            input_values,
    ):

        outputs = self.wav2vec2(input_values)
        hidden_states = outputs[0]
        hidden_states = torch.mean(hidden_states, dim=1)
        logits_age = self.age(hidden_states)
        logits_gender = torch.softmax(self.gender(hidden_states), dim=1)

        return hidden_states, logits_age, logits_gender



# load model from hub
device = 0 if torch.cuda.is_available() else "cpu"
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = AgeGenderModel.from_pretrained(model_name)


def process_func(x: np.ndarray, sampling_rate: int) -> dict:
    r"""Predict age and gender or extract embeddings from raw audio signal."""
    # run through processor to normalize signal
    # always returns a batch, so we just get the first entry
    # then we put it on the device
    y = processor(x, sampling_rate=sampling_rate)
    y = y['input_values'][0]
    y = y.reshape(1, -1)
    y = torch.from_numpy(y).to(device)

    # run through model
    with torch.no_grad():
        y = model(y)
        y = torch.hstack([y[1], y[2]])

    # convert to numpy
    y = y.detach().cpu().numpy()

    # convert to dict
    y = {
        "age": 100 * y[0][0],
        "female": y[0][1],
        "male": y[0][2],
        "child": y[0][3],
    }

    return y


@spaces.GPU
def recognize(input_file):
    # sampling_rate, signal = input_microphone
    # signal = signal.astype(np.float32, order="C") / 32768.0
    if input_file:
        signal, sampling_rate = audiofile.read(file, duration=duration)
    else:
        raise gr.Error(
            "No audio file submitted! "
            "Please upload or record an audio file "
            "before submitting your request."
        )
    # Resample to sampling rate supported byu the models
    target_rate = 16000
    signal = audresample.resample(signal, sampling_rate, target_rate)

    age_gender = process_func(signal, target_rate)
    age = f"{round(age_gender['age'])} years"
    gender = {k: v for k, v in age_gender.items() if k != "age"}
    return age, gender


outputs = gr.Label()
title = "audEERING age and gender recognition"
description = (
    "Recognize age and gender of a microphone recording or audio file. "
    f"Demo uses the checkpoint [{model_name}](https://huggingface.co/{model_name})."
)
allow_flagging = "never"

# microphone = gr.Interface(
#     fn=recognize,
#     inputs=gr.Audio(sources="microphone", type="filepath"),
#     outputs=outputs,
#     title=title,
#     description=description,
#     allow_flagging=allow_flagging,
# )

# file = gr.Interface(
#     fn=recognize,
#     inputs=gr.Audio(sources="upload", type="filepath", label="Audio file"),
#     outputs=outputs,
#     title=title,
#     description=description,
#     allow_flagging=allow_flagging,
# )
#
# # demo = gr.TabbedInterface([microphone, file], ["Microphone", "Audio file"])
# # demo.queue().launch()
# # demo.launch()
# file.launch()

def toggle_input(choice):
    if choice == "microphone":
        return gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True)


with gr.Blocks() as demo:
    gr.Markdown(description)
    with gr.Tab(label="Input"):
        with gr.Row():
            with gr.Column():
                # input_selection = gr.Radio(
                #     ["microphone", "file"],
                #     value="file",
                #     label="How would you like to upload your audio?",
                # )
                input_file = gr.Audio(
                    sources=["upload", "microphone"],
                    type="filepath",
                    label="Audio file",
                )
                # input_microphone = gr.Audio(
                #     sources="microphone",
                #     type="filepath",
                #     label="Microphone",
                # )

                # output_selector = gr.Dropdown(
                #     choices=["age", "gender"],
                #     label="Output",
                #     value="age",
                # )
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_age = gr.Textbox(label="Age")
                output_gender = gr.Label(label="gender")

            # def update_output(output_selector):
            #     """Set different output types for different model outputs."""
            #     if output_selector == "gender":
            #         output = gr.Label(label="gender")
            #     return output

            # output_selector.input(update_output, output_selector, output)

        outputs = [output_age, output_gender]

        # input_selection.change(toggle_input, input_selection, inputs)
        # input_microphone.change(lambda x: x, input_microphone, outputs)
        # input_file.change(lambda x: x, input_file, outputs)

        submit_btn.click(recognize, input_file, outputs)


demo.launch(debug=True)