Spaces:
Runtime error
Runtime error
File size: 6,298 Bytes
c6c2fd0 4923d25 c6c2fd0 d1ab157 c6c2fd0 8e2ced3 c6c2fd0 3af8c73 f6665ab 4b3a974 c6c2fd0 f6665ab 4923d25 f6665ab 4923d25 416b735 c6c2fd0 360a832 c6c2fd0 d1ab157 c6c2fd0 0aad17a c6c2fd0 d1ab157 dabc543 d1ab157 85527c3 d1ab157 3af8c73 416b735 3af8c73 416b735 d1ab157 3af8c73 85527c3 416b735 d1ab157 416b735 d6e9096 416b735 d6e9096 416b735 d1ab157 85527c3 3af8c73 d1ab157 3af8c73 f6665ab d1ab157 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
import numpy as np
import spaces
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
import audiofile
import audresample
model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender"
duration = 1 # limit processing of audio
class ModelHead(nn.Module):
r"""Classification head."""
def __init__(self, config, num_labels):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class AgeGenderModel(Wav2Vec2PreTrainedModel):
r"""Speech emotion classifier."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.age = ModelHead(config, 1)
self.gender = ModelHead(config, 3)
self.init_weights()
def forward(
self,
input_values,
):
outputs = self.wav2vec2(input_values)
hidden_states = outputs[0]
hidden_states = torch.mean(hidden_states, dim=1)
logits_age = self.age(hidden_states)
logits_gender = torch.softmax(self.gender(hidden_states), dim=1)
return hidden_states, logits_age, logits_gender
# load model from hub
device = 0 if torch.cuda.is_available() else "cpu"
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = AgeGenderModel.from_pretrained(model_name)
def process_func(x: np.ndarray, sampling_rate: int) -> dict:
r"""Predict age and gender or extract embeddings from raw audio signal."""
# run through processor to normalize signal
# always returns a batch, so we just get the first entry
# then we put it on the device
y = processor(x, sampling_rate=sampling_rate)
y = y['input_values'][0]
y = y.reshape(1, -1)
y = torch.from_numpy(y).to(device)
# run through model
with torch.no_grad():
y = model(y)
y = torch.hstack([y[1], y[2]])
# convert to numpy
y = y.detach().cpu().numpy()
# convert to dict
y = {
"age": 100 * y[0][0],
"female": y[0][1],
"male": y[0][2],
"child": y[0][3],
}
return y
@spaces.GPU
def recognize(input_file):
# sampling_rate, signal = input_microphone
# signal = signal.astype(np.float32, order="C") / 32768.0
if input_file:
signal, sampling_rate = audiofile.read(file, duration=duration)
else:
raise gr.Error(
"No audio file submitted! "
"Please upload or record an audio file "
"before submitting your request."
)
# Resample to sampling rate supported byu the models
target_rate = 16000
signal = audresample.resample(signal, sampling_rate, target_rate)
age_gender = process_func(signal, target_rate)
age = f"{round(age_gender['age'])} years"
gender = {k: v for k, v in age_gender.items() if k != "age"}
return age, gender
outputs = gr.Label()
title = "audEERING age and gender recognition"
description = (
"Recognize age and gender of a microphone recording or audio file. "
f"Demo uses the checkpoint [{model_name}](https://huggingface.co/{model_name})."
)
allow_flagging = "never"
# microphone = gr.Interface(
# fn=recognize,
# inputs=gr.Audio(sources="microphone", type="filepath"),
# outputs=outputs,
# title=title,
# description=description,
# allow_flagging=allow_flagging,
# )
# file = gr.Interface(
# fn=recognize,
# inputs=gr.Audio(sources="upload", type="filepath", label="Audio file"),
# outputs=outputs,
# title=title,
# description=description,
# allow_flagging=allow_flagging,
# )
#
# # demo = gr.TabbedInterface([microphone, file], ["Microphone", "Audio file"])
# # demo.queue().launch()
# # demo.launch()
# file.launch()
def toggle_input(choice):
if choice == "microphone":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
with gr.Blocks() as demo:
gr.Markdown(description)
with gr.Tab(label="Input"):
with gr.Row():
with gr.Column():
# input_selection = gr.Radio(
# ["microphone", "file"],
# value="file",
# label="How would you like to upload your audio?",
# )
input_file = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Audio file",
)
# input_microphone = gr.Audio(
# sources="microphone",
# type="filepath",
# label="Microphone",
# )
# output_selector = gr.Dropdown(
# choices=["age", "gender"],
# label="Output",
# value="age",
# )
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_age = gr.Textbox(label="Age")
output_gender = gr.Label(label="gender")
# def update_output(output_selector):
# """Set different output types for different model outputs."""
# if output_selector == "gender":
# output = gr.Label(label="gender")
# return output
# output_selector.input(update_output, output_selector, output)
outputs = [output_age, output_gender]
# input_selection.change(toggle_input, input_selection, inputs)
# input_microphone.change(lambda x: x, input_microphone, outputs)
# input_file.change(lambda x: x, input_file, outputs)
submit_btn.click(recognize, input_file, outputs)
demo.launch(debug=True)
|