Spaces:
Running
Running
import gradio as gr | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import spaces | |
import torch | |
import torch.nn as nn | |
from transformers import Wav2Vec2Processor | |
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model | |
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel | |
import audiofile | |
import audresample | |
device = 0 if torch.cuda.is_available() else "cpu" | |
duration = 1 # limit processing of audio | |
age_gender_model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender" | |
expression_model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim" | |
class AgeGenderHead(nn.Module): | |
r"""Age-gender model head.""" | |
def __init__(self, config, num_labels): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.final_dropout) | |
self.out_proj = nn.Linear(config.hidden_size, num_labels) | |
def forward(self, features, **kwargs): | |
x = features | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class AgeGenderModel(Wav2Vec2PreTrainedModel): | |
r"""Age-gender recognition model.""" | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.wav2vec2 = Wav2Vec2Model(config) | |
self.age = AgeGenderHead(config, 1) | |
self.gender = AgeGenderHead(config, 3) | |
self.init_weights() | |
def forward( | |
self, | |
input_values, | |
): | |
outputs = self.wav2vec2(input_values) | |
hidden_states = outputs[0] | |
hidden_states = torch.mean(hidden_states, dim=1) | |
logits_age = self.age(hidden_states) | |
logits_gender = torch.softmax(self.gender(hidden_states), dim=1) | |
return hidden_states, logits_age, logits_gender | |
class ExpressionHead(nn.Module): | |
r"""Expression model head.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.final_dropout) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, features, **kwargs): | |
x = features | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class ExpressionModel(Wav2Vec2PreTrainedModel): | |
r"""speech expression model.""" | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.wav2vec2 = Wav2Vec2Model(config) | |
self.classifier = ExpressionHead(config) | |
self.init_weights() | |
def forward(self, input_values): | |
outputs = self.wav2vec2(input_values) | |
hidden_states = outputs[0] | |
hidden_states = torch.mean(hidden_states, dim=1) | |
logits = self.classifier(hidden_states) | |
return hidden_states, logits | |
# Load models from hub | |
age_gender_processor = Wav2Vec2Processor.from_pretrained(age_gender_model_name) | |
age_gender_model = AgeGenderModel.from_pretrained(age_gender_model_name) | |
expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name) | |
expression_model = ExpressionModel.from_pretrained(expression_model_name) | |
def process_func(x: np.ndarray, sampling_rate: int) -> dict: | |
r"""Predict age and gender or extract embeddings from raw audio signal.""" | |
# run through processor to normalize signal | |
# always returns a batch, so we just get the first entry | |
# then we put it on the device | |
results = [] | |
for processor, model in zip( | |
[age_gender_processor, expression_processor], | |
[age_gender_model, expression_model], | |
): | |
y = processor(x, sampling_rate=sampling_rate) | |
y = y['input_values'][0] | |
y = y.reshape(1, -1) | |
y = torch.from_numpy(y).to(device) | |
# run through model | |
with torch.no_grad(): | |
y = model(y) | |
if len(y) == 3: | |
# Age-gender model | |
y = torch.hstack([y[1], y[2]]) | |
else: | |
# Expression model | |
y = y[1] | |
# convert to numpy | |
y = y.detach().cpu().numpy() | |
results.append(y[0]) | |
# Plot A/D/V values | |
plot_expression(results[1][0], results[1][1], results[1][2]) | |
expression_file = "expression.png" | |
plt.savefig(expression_file) | |
return ( | |
f"{round(100 * results[0][0])} years", # age | |
{ | |
"female": results[0][1], | |
"male": results[0][2], | |
"child": results[0][3], | |
}, | |
expression_file, | |
# { | |
# "arousal": results[1][0], | |
# "dominance": results[1][1], | |
# "valence": results[1][2], | |
# } | |
) | |
def recognize(input_file): | |
# sampling_rate, signal = input_microphone | |
# signal = signal.astype(np.float32, order="C") / 32768.0 | |
if input_file is None: | |
raise gr.Error( | |
"No audio file submitted! " | |
"Please upload or record an audio file " | |
"before submitting your request." | |
) | |
signal, sampling_rate = audiofile.read(input_file, duration=duration) | |
# Resample to sampling rate supported byu the models | |
target_rate = 16000 | |
signal = audresample.resample(signal, sampling_rate, target_rate) | |
return process_func(signal, target_rate) | |
def plot_expression(arousal, dominance, valence): | |
r"""3D pixel plot of arousal, dominance, valence.""" | |
# Voxels per dimension | |
voxels = 7 | |
# Create voxel grid | |
x, y, z = np.indices((voxels + 1, voxels + 1, voxels + 1)) | |
voxel = ( | |
(x == round(arousal * voxels)) | |
& (y == round(dominance * voxels)) | |
& (z == round(valence * voxels)) | |
) | |
colors = np.empty(voxel.shape, dtype=object) | |
colors[voxel] = "#fcb06c" | |
ax = plt.figure().add_subplot(projection='3d') | |
ax.voxels(voxel, facecolors=colors, edgecolor='k') | |
ax.set_aspect("equal") | |
ax.set_xlim([0, voxels]) | |
ax.set_ylim([0, voxels]) | |
ax.set_zlim([0, voxels]) | |
ax.set_xlabel("arousal", fontsize="large", labelpad=0) | |
ax.set_ylabel("dominance", fontsize="large", labelpad=0) | |
ax.set_zlabel("valence", fontsize="large", labelpad=0) | |
ax.set_xticks( | |
list(range(voxels + 1)), | |
labels=["low", None, None, None, None, None, None, "high"], | |
rotation=45, | |
rotation_mode="anchor", | |
verticalalignment="bottom", | |
) | |
ax.set_yticks( | |
list(range(voxels + 1)), | |
labels=["low", None, None, None, None, None, None, "high"], | |
rotation=-25, | |
rotation_mode="anchor", | |
verticalalignment="bottom", | |
) | |
ax.set_zticks( | |
list(range(voxels + 1)), | |
labels=["low", None, None, None, None, None, None, "high"], | |
rotation=25, | |
rotation_mode="default", | |
verticalalignment="bottom", | |
) | |
description = ( | |
"Recognize " | |
f"[age](https://huggingface.co/{age_gender_model_name}), " | |
f"[gender](https://huggingface.co/{age_gender_model_name}), " | |
f"and [expression](https://huggingface.co/{expression_model_name}) " | |
"of an audio file or microphone recording." | |
) | |
with gr.Blocks() as demo: | |
with gr.Tab(label="Speech analysis"): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(description) | |
input = gr.Audio( | |
sources=["upload", "microphone"], | |
type="filepath", | |
label="Audio input", | |
) | |
gr.Markdown("Only the first second of the audio is processed.") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_age = gr.Textbox(label="Age") | |
output_gender = gr.Label(label="Gender") | |
# output_expression = gr.Label(label="Expression") | |
output_expression = gr.Image(label="Expression") | |
outputs = [output_age, output_gender, output_expression] | |
submit_btn.click(recognize, input, outputs) | |
demo.launch(debug=True) | |