speech-analysis / app.py
hagenw's picture
Output expression as 3D plot
0c25e83
raw
history blame
8.17 kB
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import spaces
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
import audiofile
import audresample
device = 0 if torch.cuda.is_available() else "cpu"
duration = 1 # limit processing of audio
age_gender_model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender"
expression_model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"
class AgeGenderHead(nn.Module):
r"""Age-gender model head."""
def __init__(self, config, num_labels):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class AgeGenderModel(Wav2Vec2PreTrainedModel):
r"""Age-gender recognition model."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.age = AgeGenderHead(config, 1)
self.gender = AgeGenderHead(config, 3)
self.init_weights()
def forward(
self,
input_values,
):
outputs = self.wav2vec2(input_values)
hidden_states = outputs[0]
hidden_states = torch.mean(hidden_states, dim=1)
logits_age = self.age(hidden_states)
logits_gender = torch.softmax(self.gender(hidden_states), dim=1)
return hidden_states, logits_age, logits_gender
class ExpressionHead(nn.Module):
r"""Expression model head."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class ExpressionModel(Wav2Vec2PreTrainedModel):
r"""speech expression model."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = ExpressionHead(config)
self.init_weights()
def forward(self, input_values):
outputs = self.wav2vec2(input_values)
hidden_states = outputs[0]
hidden_states = torch.mean(hidden_states, dim=1)
logits = self.classifier(hidden_states)
return hidden_states, logits
# Load models from hub
age_gender_processor = Wav2Vec2Processor.from_pretrained(age_gender_model_name)
age_gender_model = AgeGenderModel.from_pretrained(age_gender_model_name)
expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name)
expression_model = ExpressionModel.from_pretrained(expression_model_name)
def process_func(x: np.ndarray, sampling_rate: int) -> dict:
r"""Predict age and gender or extract embeddings from raw audio signal."""
# run through processor to normalize signal
# always returns a batch, so we just get the first entry
# then we put it on the device
results = []
for processor, model in zip(
[age_gender_processor, expression_processor],
[age_gender_model, expression_model],
):
y = processor(x, sampling_rate=sampling_rate)
y = y['input_values'][0]
y = y.reshape(1, -1)
y = torch.from_numpy(y).to(device)
# run through model
with torch.no_grad():
y = model(y)
if len(y) == 3:
# Age-gender model
y = torch.hstack([y[1], y[2]])
else:
# Expression model
y = y[1]
# convert to numpy
y = y.detach().cpu().numpy()
results.append(y[0])
# Plot A/D/V values
plot_expression(results[1][0], results[1][1], results[1][2])
expression_file = "expression.png"
plt.savefig(expression_file)
return (
f"{round(100 * results[0][0])} years", # age
{
"female": results[0][1],
"male": results[0][2],
"child": results[0][3],
},
expression_file,
# {
# "arousal": results[1][0],
# "dominance": results[1][1],
# "valence": results[1][2],
# }
)
@spaces.GPU
def recognize(input_file):
# sampling_rate, signal = input_microphone
# signal = signal.astype(np.float32, order="C") / 32768.0
if input_file is None:
raise gr.Error(
"No audio file submitted! "
"Please upload or record an audio file "
"before submitting your request."
)
signal, sampling_rate = audiofile.read(input_file, duration=duration)
# Resample to sampling rate supported byu the models
target_rate = 16000
signal = audresample.resample(signal, sampling_rate, target_rate)
return process_func(signal, target_rate)
def plot_expression(arousal, dominance, valence):
r"""3D pixel plot of arousal, dominance, valence."""
# Voxels per dimension
voxels = 7
# Create voxel grid
x, y, z = np.indices((voxels + 1, voxels + 1, voxels + 1))
voxel = (
(x == round(arousal * voxels))
& (y == round(dominance * voxels))
& (z == round(valence * voxels))
)
colors = np.empty(voxel.shape, dtype=object)
colors[voxel] = "#fcb06c"
ax = plt.figure().add_subplot(projection='3d')
ax.voxels(voxel, facecolors=colors, edgecolor='k')
ax.set_aspect("equal")
ax.set_xlim([0, voxels])
ax.set_ylim([0, voxels])
ax.set_zlim([0, voxels])
ax.set_xlabel("arousal", fontsize="large", labelpad=0)
ax.set_ylabel("dominance", fontsize="large", labelpad=0)
ax.set_zlabel("valence", fontsize="large", labelpad=0)
ax.set_xticks(
list(range(voxels + 1)),
labels=["low", None, None, None, None, None, None, "high"],
rotation=45,
rotation_mode="anchor",
verticalalignment="bottom",
)
ax.set_yticks(
list(range(voxels + 1)),
labels=["low", None, None, None, None, None, None, "high"],
rotation=-25,
rotation_mode="anchor",
verticalalignment="bottom",
)
ax.set_zticks(
list(range(voxels + 1)),
labels=["low", None, None, None, None, None, None, "high"],
rotation=25,
rotation_mode="default",
verticalalignment="bottom",
)
description = (
"Recognize "
f"[age](https://huggingface.co/{age_gender_model_name}), "
f"[gender](https://huggingface.co/{age_gender_model_name}), "
f"and [expression](https://huggingface.co/{expression_model_name}) "
"of an audio file or microphone recording."
)
with gr.Blocks() as demo:
with gr.Tab(label="Speech analysis"):
with gr.Row():
with gr.Column():
gr.Markdown(description)
input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Audio input",
)
gr.Markdown("Only the first second of the audio is processed.")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_age = gr.Textbox(label="Age")
output_gender = gr.Label(label="Gender")
# output_expression = gr.Label(label="Expression")
output_expression = gr.Image(label="Expression")
outputs = [output_age, output_gender, output_expression]
submit_btn.click(recognize, input, outputs)
demo.launch(debug=True)