File size: 8,665 Bytes
0182e84
 
c6c2fd0
0c25e83
c6c2fd0
 
 
 
 
 
 
 
 
4923d25
c6c2fd0
 
ba45a7b
6c4d5a1
f62c750
 
d1ab157
 
ba45a7b
 
c6c2fd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba45a7b
c6c2fd0
 
 
 
 
 
 
ba45a7b
 
c6c2fd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f62c750
 
c6c2fd0
f62c750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6c2fd0
 
0182e84
c6c2fd0
 
 
 
f62c750
 
 
 
 
 
 
 
 
 
 
 
 
b3dfc3c
7454896
 
 
 
 
f62c750
 
 
 
 
0c25e83
 
 
 
f62c750
78d5044
f62c750
 
 
 
 
0c25e83
f62c750
c6c2fd0
 
 
0182e84
3af8c73
 
ba45a7b
c6c2fd0
 
 
 
 
ba45a7b
 
f6665ab
4923d25
 
f6665ab
f62c750
c6c2fd0
 
0c25e83
 
 
 
 
 
 
 
 
 
 
96b678f
 
 
 
 
 
0c25e83
96b678f
0c25e83
96b678f
0c25e83
 
 
96b678f
0c25e83
 
 
 
 
24435c4
0c25e83
 
 
 
24435c4
0c25e83
 
 
 
24435c4
 
0c25e83
 
 
 
c6c2fd0
dd32c3d
 
a562b02
 
3c3900b
a562b02
 
dd32c3d
c6c2fd0
85527c3
d1ab157
fa18e4b
d1ab157
 
963cdb8
fa18e4b
3af8c73
416b735
fa18e4b
154c646
d1ab157
4789b5d
 
573cc83
 
 
4789b5d
 
 
5705068
4789b5d
6c4d5a1
d1ab157
 
416b735
fa18e4b
0c25e83
d1ab157
f62c750
 
f6665ab
 
d1ab157
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import typing

import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import spaces
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel

import audiofile
import audresample


device = 0 if torch.cuda.is_available() else "cpu"
duration = 2  # limit processing of audio
age_gender_model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender"
expression_model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"


class AgeGenderHead(nn.Module):
    r"""Age-gender model head."""

    def __init__(self, config, num_labels):

        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.final_dropout)
        self.out_proj = nn.Linear(config.hidden_size, num_labels)

    def forward(self, features, **kwargs):

        x = features
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)

        return x


class AgeGenderModel(Wav2Vec2PreTrainedModel):
    r"""Age-gender recognition model."""

    def __init__(self, config):

        super().__init__(config)

        self.config = config
        self.wav2vec2 = Wav2Vec2Model(config)
        self.age = AgeGenderHead(config, 1)
        self.gender = AgeGenderHead(config, 3)
        self.init_weights()

    def forward(
            self,
            input_values,
    ):

        outputs = self.wav2vec2(input_values)
        hidden_states = outputs[0]
        hidden_states = torch.mean(hidden_states, dim=1)
        logits_age = self.age(hidden_states)
        logits_gender = torch.softmax(self.gender(hidden_states), dim=1)

        return hidden_states, logits_age, logits_gender


class ExpressionHead(nn.Module):
    r"""Expression model head."""

    def __init__(self, config):

        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.final_dropout)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):

        x = features
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)

        return x


class ExpressionModel(Wav2Vec2PreTrainedModel):
    r"""speech expression model."""

    def __init__(self, config):

        super().__init__(config)

        self.config = config
        self.wav2vec2 = Wav2Vec2Model(config)
        self.classifier = ExpressionHead(config)
        self.init_weights()

    def forward(self, input_values):
        outputs = self.wav2vec2(input_values)
        hidden_states = outputs[0]
        hidden_states = torch.mean(hidden_states, dim=1)
        logits = self.classifier(hidden_states)

        return hidden_states, logits


# Load models from hub
age_gender_processor = Wav2Vec2Processor.from_pretrained(age_gender_model_name)
age_gender_model = AgeGenderModel.from_pretrained(age_gender_model_name)
expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name)
expression_model = ExpressionModel.from_pretrained(expression_model_name)


def process_func(x: np.ndarray, sampling_rate: int) -> typing.Tuple[str, dict, str]:
    r"""Predict age and gender or extract embeddings from raw audio signal."""
    # run through processor to normalize signal
    # always returns a batch, so we just get the first entry
    # then we put it on the device
    results = []
    for processor, model in zip(
            [age_gender_processor, expression_processor],
            [age_gender_model, expression_model],
    ):
        y = processor(x, sampling_rate=sampling_rate)
        y = y['input_values'][0]
        y = y.reshape(1, -1)
        y = torch.from_numpy(y).to(device)

        # run through model
        with torch.no_grad():
            y = model(y)
            if len(y) == 3:
                # Age-gender model
                y = torch.hstack([y[1], y[2]])
            else:
                # Expression model
                y = y[1]

        # convert to numpy
        y = y.detach().cpu().numpy()
        results.append(y[0])

    # Plot A/D/V values
    plot_expression(results[1][0], results[1][1], results[1][2])
    expression_file = "expression.png"
    plt.savefig(expression_file)
    return (
        f"{round(100 * results[0][0])} years",  # age
        {
            "female": results[0][1],
            "male": results[0][2],
            "child": results[0][3],
        },
        expression_file,
    )


@spaces.GPU
def recognize(input_file: str) -> typing.Tuple[str, dict, str]:
    # sampling_rate, signal = input_microphone
    # signal = signal.astype(np.float32, order="C") / 32768.0
    if input_file is None:
        raise gr.Error(
            "No audio file submitted! "
            "Please upload or record an audio file "
            "before submitting your request."
        )

    signal, sampling_rate = audiofile.read(input_file, duration=duration)
    # Resample to sampling rate supported byu the models
    target_rate = 16000
    signal = audresample.resample(signal, sampling_rate, target_rate)

    return process_func(signal, target_rate)


def plot_expression(arousal, dominance, valence):
    r"""3D pixel plot of arousal, dominance, valence."""
    # Voxels per dimension
    voxels = 7
    # Create voxel grid
    x, y, z = np.indices((voxels + 1, voxels + 1, voxels + 1))
    voxel = (
        (x == round(arousal * voxels))
        & (y == round(dominance * voxels))
        & (z == round(valence * voxels))
    )
    projection = (
        (x == round(arousal * voxels))
        & (y == round(dominance * voxels))
        & (z < round(valence * voxels))
    )
    colors = np.empty((voxel | projection).shape, dtype=object)
    colors[voxel] = "#fcb06c"
    colors[projection] = "#fed7a9"
    ax = plt.figure().add_subplot(projection='3d')
    ax.voxels(voxel | projection, facecolors=colors, edgecolor='k')
    ax.set_xlim([0, voxels])
    ax.set_ylim([0, voxels])
    ax.set_zlim([0, voxels])
    ax.set_aspect("equal")
    ax.set_xlabel("arousal", fontsize="large", labelpad=0)
    ax.set_ylabel("dominance", fontsize="large", labelpad=0)
    ax.set_zlabel("valence", fontsize="large", labelpad=0)
    ax.set_xticks(
        list(range(voxels + 1)),
        labels=[0, None, None, None, None, None, None, 1],
        verticalalignment="bottom",
    )
    ax.set_yticks(
        list(range(voxels + 1)),
        labels=[0, None, None, None, None, None, None, 1],
        verticalalignment="bottom",
    )
    ax.set_zticks(
        list(range(voxels + 1)),
        labels=[0, None, None, None, None, None, None, 1],
        verticalalignment="top",
    )



description = (
    "Estimate **age**, **gender**, and **expression** "
    "of the speaker contained in an audio file or microphone recording.  \n"
    f"The model [{age_gender_model_name}]"
    f"(https://huggingface.co/{age_gender_model_name}) "
    "recognises age and gender, "
    f"whereas [{expression_model_name}]"
    f"(https://huggingface.co/{expression_model_name}) "
    "recognises the expression dimensions arousal, dominance, and valence. "
)

with gr.Blocks() as demo:
    with gr.Tab(label="Speech analysis"):
        with gr.Row():
            with gr.Column():
                gr.Markdown(description)
                input = gr.Audio(
                    sources=["upload", "microphone"],
                    type="filepath",
                    label="Audio input",
                    min_length=0.025,  # seconds
                )
                gr.Examples(
                    [
                        "female-46-neutral.wav",
                        "female-20-happy.wav",
                        "male-60-angry.wav",
                        "male-27-sad.wav",
                    ],
                    [input],
                    label="Examples from CREMA-D, ODbL v1.0 license",
                )
                gr.Markdown("Only the first two seconds of the audio will be processed.")
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_age = gr.Textbox(label="Age")
                output_gender = gr.Label(label="Gender")
                output_expression = gr.Image(label="Expression")

        outputs = [output_age, output_gender, output_expression]
        submit_btn.click(recognize, input, outputs)


demo.launch(debug=True)