Spaces:
Running
Running
wissamantoun
commited on
Commit
·
c59ebda
1
Parent(s):
5bff47f
added language generation
Browse files- .github/workflows/push_to_hf_hub.yml +1 -1
- .gitignore +2 -1
- app.py +20 -8
- backend.py +0 -0
- {pages → backend}/__init__.py +0 -0
- backend/aragpt.py +182 -0
- {pages → backend}/home.py +0 -0
- backend/modeling_gpt2.py +1196 -0
- {pages → backend}/preprocess.py +0 -0
- {pages → backend}/processor.py +1 -2
- backend/services.py +174 -0
- requirements.txt +3 -1
- test.py +10 -0
.github/workflows/push_to_hf_hub.yml
CHANGED
@@ -17,4 +17,4 @@ jobs:
|
|
17 |
- name: Push to hub
|
18 |
env:
|
19 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
20 |
-
run: git push --force https://
|
|
|
17 |
- name: Push to hub
|
18 |
env:
|
19 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
20 |
+
run: git push --force https://aubmindlab:[email protected]/spaces/aubmindlab/Arabic-NLP main
|
.gitignore
CHANGED
@@ -129,4 +129,5 @@ dmypy.json
|
|
129 |
.pyre/
|
130 |
|
131 |
|
132 |
-
.vscode/
|
|
|
|
129 |
.pyre/
|
130 |
|
131 |
|
132 |
+
.vscode/
|
133 |
+
add_key.bat
|
app.py
CHANGED
@@ -1,24 +1,36 @@
|
|
1 |
-
import streamlit as st
|
2 |
import awesome_streamlit as ast
|
3 |
-
import
|
4 |
-
import pages.processor
|
5 |
|
|
|
|
|
|
|
6 |
|
7 |
st.set_page_config(
|
8 |
page_title="TEST", page_icon="📖", initial_sidebar_state="expanded", layout="wide"
|
9 |
)
|
10 |
|
11 |
-
PAGES = {
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
st.sidebar.title("Navigation")
|
15 |
selection = st.sidebar.radio("Pages", list(PAGES.keys()))
|
16 |
|
17 |
page = PAGES[selection]
|
18 |
-
with st.spinner(f"Loading {selection} ..."):
|
19 |
-
|
20 |
|
21 |
st.sidebar.header("Info")
|
22 |
st.sidebar.write("Made by [Wissam Antoun](https://twitter.com/wissam_antoun)")
|
23 |
-
st.sidebar.write(
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import awesome_streamlit as ast
|
2 |
+
import streamlit as st
|
|
|
3 |
|
4 |
+
import backend.aragpt
|
5 |
+
import backend.home
|
6 |
+
import backend.processor
|
7 |
|
8 |
st.set_page_config(
|
9 |
page_title="TEST", page_icon="📖", initial_sidebar_state="expanded", layout="wide"
|
10 |
)
|
11 |
|
12 |
+
PAGES = {
|
13 |
+
"Home": backend.home,
|
14 |
+
"Arabic Text Preprocessor": backend.processor,
|
15 |
+
"Arabic Language Generation": backend.aragpt,
|
16 |
+
}
|
17 |
|
18 |
|
19 |
st.sidebar.title("Navigation")
|
20 |
selection = st.sidebar.radio("Pages", list(PAGES.keys()))
|
21 |
|
22 |
page = PAGES[selection]
|
23 |
+
# with st.spinner(f"Loading {selection} ..."):
|
24 |
+
ast.shared.components.write_page(page)
|
25 |
|
26 |
st.sidebar.header("Info")
|
27 |
st.sidebar.write("Made by [Wissam Antoun](https://twitter.com/wissam_antoun)")
|
28 |
+
st.sidebar.write(
|
29 |
+
"Pre-trained models are available on [HF Hub](https://huggingface.co/aubmindlab)"
|
30 |
+
)
|
31 |
+
st.sidebar.write(
|
32 |
+
"Models source code available on [GitHub](https://github.com/aub-mind/arabert)"
|
33 |
+
)
|
34 |
+
st.sidebar.write(
|
35 |
+
"App source code available on [GitHub](https://github.com/WissamAntoun/Arabic-NLP-app)"
|
36 |
+
)
|
backend.py
DELETED
File without changes
|
{pages → backend}/__init__.py
RENAMED
File without changes
|
backend/aragpt.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from .services import TextGeneration
|
3 |
+
from tokenizers import Tokenizer
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
# @st.cache(allow_output_mutation=False, hash_funcs={Tokenizer: str})
|
7 |
+
@lru_cache(maxsize=1)
|
8 |
+
def load_text_generator():
|
9 |
+
generator = TextGeneration()
|
10 |
+
generator.load()
|
11 |
+
return generator
|
12 |
+
|
13 |
+
|
14 |
+
generator = load_text_generator()
|
15 |
+
|
16 |
+
qa_prompt = """
|
17 |
+
أجب عن السؤال التالي:
|
18 |
+
"""
|
19 |
+
qa_prompt_post = """ الجواب هو """
|
20 |
+
qa_prompt_post_year = """ في سنة: """
|
21 |
+
|
22 |
+
|
23 |
+
def write():
|
24 |
+
# Sidebar
|
25 |
+
|
26 |
+
# Taken from https://huggingface.co/spaces/flax-community/spanish-gpt2/blob/main/app.py
|
27 |
+
st.sidebar.subheader("Configurable parameters")
|
28 |
+
|
29 |
+
model_name = st.sidebar.selectbox(
|
30 |
+
"Model Selector",
|
31 |
+
options=[
|
32 |
+
"AraGPT2-Base",
|
33 |
+
"AraGPT2-Medium",
|
34 |
+
"Aragpt2-Large",
|
35 |
+
"AraGPT2-Mega",
|
36 |
+
],
|
37 |
+
index=0,
|
38 |
+
)
|
39 |
+
|
40 |
+
max_new_tokens = st.sidebar.number_input(
|
41 |
+
"Maximum length",
|
42 |
+
min_value=0,
|
43 |
+
max_value=1024,
|
44 |
+
value=100,
|
45 |
+
help="The maximum length of the sequence to be generated.",
|
46 |
+
)
|
47 |
+
temp = st.sidebar.slider(
|
48 |
+
"Temperature",
|
49 |
+
value=1.0,
|
50 |
+
min_value=0.1,
|
51 |
+
max_value=100.0,
|
52 |
+
help="The value used to module the next token probabilities.",
|
53 |
+
)
|
54 |
+
top_k = st.sidebar.number_input(
|
55 |
+
"Top k",
|
56 |
+
value=10,
|
57 |
+
help="The number of highest probability vocabulary tokens to keep for top-k-filtering.",
|
58 |
+
)
|
59 |
+
top_p = st.sidebar.number_input(
|
60 |
+
"Top p",
|
61 |
+
value=0.95,
|
62 |
+
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.",
|
63 |
+
)
|
64 |
+
do_sample = st.sidebar.selectbox(
|
65 |
+
"Sampling?",
|
66 |
+
(True, False),
|
67 |
+
help="Whether or not to use sampling; use greedy decoding otherwise.",
|
68 |
+
)
|
69 |
+
num_beams = st.sidebar.number_input(
|
70 |
+
"Number of beams",
|
71 |
+
min_value=1,
|
72 |
+
max_value=10,
|
73 |
+
value=3,
|
74 |
+
help="The number of beams to use for beam search.",
|
75 |
+
)
|
76 |
+
repetition_penalty = st.sidebar.number_input(
|
77 |
+
"Repetition Penalty",
|
78 |
+
min_value=0.0,
|
79 |
+
value=3.0,
|
80 |
+
step=0.1,
|
81 |
+
help="The parameter for repetition penalty. 1.0 means no penalty",
|
82 |
+
)
|
83 |
+
no_repeat_ngram_size = st.sidebar.number_input(
|
84 |
+
"No Repear N-Gram Size",
|
85 |
+
min_value=0,
|
86 |
+
value=3,
|
87 |
+
help="If set to int > 0, all ngrams of that size can only occur once.",
|
88 |
+
)
|
89 |
+
|
90 |
+
st.write("#")
|
91 |
+
|
92 |
+
col = st.beta_columns(2)
|
93 |
+
|
94 |
+
col[0].image("images/AraGPT2.png", width=200)
|
95 |
+
|
96 |
+
st.markdown(
|
97 |
+
"""
|
98 |
+
|
99 |
+
<h3 style="text-align:left;">AraGPT2 is GPT2 model trained from scratch on 77GB of Arabic text.</h3>
|
100 |
+
<h4 style="text-align:left;"> More details in our <a href="https://github.com/aub-mind/arabert/tree/master/aragpt2">repo</a>.</h4>
|
101 |
+
|
102 |
+
<p style="text-align:left;"><p>
|
103 |
+
<p style="text-align:left;">Use the generation paramters on the sidebar to adjust generation quality.</p>
|
104 |
+
<p style="text-align:right;"><p>
|
105 |
+
""",
|
106 |
+
unsafe_allow_html=True,
|
107 |
+
)
|
108 |
+
|
109 |
+
# col[0].write(
|
110 |
+
# "AraGPT2 is trained from screatch on 77GB of Arabic text. More details in our [repo](https://github.com/aub-mind/arabert/tree/master/aragpt2)."
|
111 |
+
# )
|
112 |
+
# st.write("## Generate Arabic Text")
|
113 |
+
|
114 |
+
st.markdown(
|
115 |
+
"""
|
116 |
+
<style>
|
117 |
+
p, div, input, label, textarea{
|
118 |
+
text-align: right;
|
119 |
+
}
|
120 |
+
</style>
|
121 |
+
""",
|
122 |
+
unsafe_allow_html=True,
|
123 |
+
)
|
124 |
+
|
125 |
+
prompt = st.text_area(
|
126 |
+
"Prompt",
|
127 |
+
"يحكى أن مزارعا مخادعا قام ببيع بئر الماء الموجود في أرضه لجاره مقابل مبلغ كبير من المال",
|
128 |
+
)
|
129 |
+
if st.button("Generate"):
|
130 |
+
with st.spinner("Generating..."):
|
131 |
+
generated_text = generator.generate(
|
132 |
+
prompt=prompt,
|
133 |
+
model_name=model_name,
|
134 |
+
max_new_tokens=max_new_tokens,
|
135 |
+
temperature=temp,
|
136 |
+
top_k=top_k,
|
137 |
+
top_p=top_p,
|
138 |
+
repetition_penalty=repetition_penalty,
|
139 |
+
do_sample=do_sample,
|
140 |
+
num_beams=num_beams,
|
141 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
142 |
+
)
|
143 |
+
st.write(generated_text)
|
144 |
+
|
145 |
+
st.markdown("---")
|
146 |
+
st.subheader("")
|
147 |
+
st.markdown(
|
148 |
+
"""
|
149 |
+
<p style="text-align:left;"><p>
|
150 |
+
<h2 style="text-align:left;">Zero-Shot Question Answering</h2>
|
151 |
+
|
152 |
+
<p style="text-align:left;">Adjust the maximum length to closely match the expected output length. Setting the Sampling paramter to False is recommended</p>
|
153 |
+
<p style="text-align:left;"><p>
|
154 |
+
""",
|
155 |
+
unsafe_allow_html=True,
|
156 |
+
)
|
157 |
+
|
158 |
+
question = st.text_input(
|
159 |
+
"Question", "من كان رئيس ألمانيا النازية في الحرب العالمية ��لثانية ؟"
|
160 |
+
)
|
161 |
+
is_date = st.checkbox("Help the model: Is the answer a date?")
|
162 |
+
if st.button("Answer"):
|
163 |
+
|
164 |
+
prompt = qa_prompt + question + qa_prompt_post
|
165 |
+
if is_date:
|
166 |
+
prompt += qa_prompt_post_year
|
167 |
+
else:
|
168 |
+
prompt += " : "
|
169 |
+
with st.spinner("Thinking..."):
|
170 |
+
answer = generator.generate(
|
171 |
+
prompt=prompt,
|
172 |
+
model_name=model_name,
|
173 |
+
max_new_tokens=max_new_tokens,
|
174 |
+
temperature=temp,
|
175 |
+
top_k=top_k,
|
176 |
+
top_p=top_p,
|
177 |
+
repetition_penalty=repetition_penalty,
|
178 |
+
do_sample=do_sample,
|
179 |
+
num_beams=num_beams,
|
180 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
181 |
+
)
|
182 |
+
st.write(answer)
|
{pages → backend}/home.py
RENAMED
File without changes
|
backend/modeling_gpt2.py
ADDED
@@ -0,0 +1,1196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
"""
|
18 |
+
PyTorch OpenAI GPT-2 model.
|
19 |
+
Adapted from https://github.com/huggingface/transformers/blob/v4.0.1/src/transformers/models/gpt2/modeling_gpt2.py
|
20 |
+
and https://github.com/ghosthamlet/gpt2-ml-torch/blob/master/gpt2_ml_torch/modeling_gpt2.py
|
21 |
+
"""
|
22 |
+
|
23 |
+
|
24 |
+
import logging
|
25 |
+
import os
|
26 |
+
|
27 |
+
from dataclasses import dataclass
|
28 |
+
from typing import List, Optional, Tuple
|
29 |
+
|
30 |
+
import torch
|
31 |
+
import torch.nn as nn
|
32 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
from transformers.activations import ACT2FN
|
37 |
+
from transformers import GPT2Config
|
38 |
+
|
39 |
+
from transformers.modeling_utils import (
|
40 |
+
Conv1D,
|
41 |
+
PreTrainedModel,
|
42 |
+
SequenceSummary,
|
43 |
+
prune_conv1d_layer,
|
44 |
+
find_pruneable_heads_and_indices
|
45 |
+
)
|
46 |
+
|
47 |
+
from transformers import CONFIG_NAME, WEIGHTS_NAME, GPT2Config, GPT2Model
|
48 |
+
|
49 |
+
from transformers.modeling_outputs import (
|
50 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
51 |
+
CausalLMOutputWithCrossAttentions,
|
52 |
+
SequenceClassifierOutputWithPast
|
53 |
+
)
|
54 |
+
|
55 |
+
from transformers.file_utils import (
|
56 |
+
ModelOutput,
|
57 |
+
add_start_docstrings,
|
58 |
+
add_start_docstrings_to_model_forward,
|
59 |
+
add_code_sample_docstrings,
|
60 |
+
replace_return_docstrings
|
61 |
+
)
|
62 |
+
|
63 |
+
# THe Difference from Transformers is code under _USE_GROVER
|
64 |
+
_USE_GROVER = True
|
65 |
+
|
66 |
+
logger = logging.getLogger(__name__)
|
67 |
+
|
68 |
+
_CONFIG_FOR_DOC = "GPT2Config"
|
69 |
+
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"
|
70 |
+
|
71 |
+
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
72 |
+
"gpt2",
|
73 |
+
"gpt2-medium",
|
74 |
+
"gpt2-large",
|
75 |
+
"gpt2-xl",
|
76 |
+
"distilgpt2",
|
77 |
+
# See all GPT-2 models at https://huggingface.co/models?filter=gpt2
|
78 |
+
]
|
79 |
+
|
80 |
+
logger.setLevel(logging.INFO)
|
81 |
+
console = logging.StreamHandler()
|
82 |
+
console.setLevel(logging.INFO)
|
83 |
+
logger.addHandler(console)
|
84 |
+
|
85 |
+
_GPT2_ML_TF_TO_TORCH = {
|
86 |
+
'LayerNorm_embed_norm': 'emb_norm',
|
87 |
+
'pos_embed': 'wpe.weight',
|
88 |
+
'word_embed': 'wte.weight',
|
89 |
+
|
90 |
+
'layer': 'h',
|
91 |
+
# Most importently This two layer norm must be put on the same position as gpt2-ml
|
92 |
+
# or generated data is bad, just repeat the last token
|
93 |
+
'LayerNorm_mlp_ln0': 'ln_1',
|
94 |
+
'LayerNorm_mlp_ln1': 'ln_2',
|
95 |
+
'intermediate': 'mlp.c_fc',
|
96 |
+
'output': 'mlp.c_proj',
|
97 |
+
'query_layer': 'attn.c_attn',
|
98 |
+
'key_layer': 'attn.c_attn',
|
99 |
+
'value_layer': 'attn.c_attn',
|
100 |
+
'context_projection_layer': 'attn.c_proj',
|
101 |
+
|
102 |
+
'gamma': 'weight',
|
103 |
+
'kernel': 'weight',
|
104 |
+
'beta': 'bias',
|
105 |
+
'bias': 'bias',
|
106 |
+
}
|
107 |
+
|
108 |
+
|
109 |
+
def convert_gpt2_checkpoint_to_pytorch(gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path):
|
110 |
+
# Construct model
|
111 |
+
if gpt2_config_file == "":
|
112 |
+
config = GPT2Config()
|
113 |
+
else:
|
114 |
+
config = GPT2Config.from_json_file(gpt2_config_file)
|
115 |
+
model = GPT2Model(config)
|
116 |
+
|
117 |
+
# Load weights from numpy
|
118 |
+
load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path)
|
119 |
+
|
120 |
+
# Save pytorch-model
|
121 |
+
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
|
122 |
+
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
|
123 |
+
print("Save PyTorch model to {}".format(pytorch_weights_dump_path))
|
124 |
+
torch.save(model.state_dict(), pytorch_weights_dump_path)
|
125 |
+
print("Save configuration file to {}".format(pytorch_config_dump_path))
|
126 |
+
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
|
127 |
+
f.write(config.to_json_string())
|
128 |
+
|
129 |
+
|
130 |
+
# XXX: MUST do like: convert_gpt2_checkpoint_to_pytorch('./model.ckpt-100000', './mega.json', './')
|
131 |
+
# https://github.com/tensorflow/models/issues/2675#issuecomment-516595597
|
132 |
+
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
133 |
+
""" Load tf checkpoints in a pytorch model
|
134 |
+
"""
|
135 |
+
try:
|
136 |
+
import re
|
137 |
+
import tensorflow as tf
|
138 |
+
except ImportError:
|
139 |
+
logger.error(
|
140 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
141 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
142 |
+
)
|
143 |
+
raise
|
144 |
+
tf_path = os.path.abspath(gpt2_checkpoint_path)
|
145 |
+
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
|
146 |
+
# Load weights from TF model
|
147 |
+
init_vars = tf.train.list_variables(tf_path)
|
148 |
+
names = []
|
149 |
+
arrays = []
|
150 |
+
for name, shape in init_vars:
|
151 |
+
logger.info("Loading TF weight {} with shape {}".format(name, shape))
|
152 |
+
array = tf.train.load_variable(tf_path, name)
|
153 |
+
names.append(name)
|
154 |
+
arrays.append(array.squeeze())
|
155 |
+
|
156 |
+
import copy
|
157 |
+
orig_model = copy.deepcopy(model)
|
158 |
+
|
159 |
+
for name, array in zip(names, arrays):
|
160 |
+
name = name[6:] # skip "model/"
|
161 |
+
name = name.split("/")
|
162 |
+
pointer = model
|
163 |
+
|
164 |
+
attn_layer = ''
|
165 |
+
for m_name in name:
|
166 |
+
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
167 |
+
scope_names = re.split(r"(\d+)", m_name)
|
168 |
+
else:
|
169 |
+
scope_names = [m_name]
|
170 |
+
sname = scope_names[0]
|
171 |
+
|
172 |
+
if sname == '' or sname == 'embeddings':
|
173 |
+
continue
|
174 |
+
elif sname not in _GPT2_ML_TF_TO_TORCH:
|
175 |
+
print('=========================================================')
|
176 |
+
logger.info('Skip var name {}'.format(scope_names))
|
177 |
+
pointer = None
|
178 |
+
break
|
179 |
+
else:
|
180 |
+
tname = _GPT2_ML_TF_TO_TORCH[sname]
|
181 |
+
if '.' in tname:
|
182 |
+
parent, child = tname.split('.')
|
183 |
+
pointer = getattr(pointer, parent)
|
184 |
+
pointer = getattr(pointer, child)
|
185 |
+
else:
|
186 |
+
pointer = getattr(pointer, tname)
|
187 |
+
|
188 |
+
if tname == 'attn.c_attn':
|
189 |
+
attn_layer = sname
|
190 |
+
|
191 |
+
if len(scope_names) >= 2:
|
192 |
+
num = int(scope_names[1])
|
193 |
+
pointer = pointer[num]
|
194 |
+
|
195 |
+
if pointer is None:
|
196 |
+
continue
|
197 |
+
if attn_layer == '':
|
198 |
+
try:
|
199 |
+
assert pointer.shape == array.shape
|
200 |
+
except AssertionError as e:
|
201 |
+
e.args += (pointer.shape, array.shape)
|
202 |
+
raise
|
203 |
+
logger.info("Initialize PyTorch weight {}, {}, {}".format(name, array.mean(), pointer.mean()))
|
204 |
+
if attn_layer == '':
|
205 |
+
pointer.data = torch.from_numpy(array)
|
206 |
+
else:
|
207 |
+
shape = pointer.shape
|
208 |
+
d = torch.from_numpy(array)
|
209 |
+
is_bias = len(shape) == 1
|
210 |
+
end = int(shape[0 if is_bias else 1]/3)
|
211 |
+
m = dict(
|
212 |
+
query_layer=0,
|
213 |
+
key_layer=end,
|
214 |
+
value_layer=end*2,
|
215 |
+
)
|
216 |
+
start = m[attn_layer]
|
217 |
+
end = start + end
|
218 |
+
if is_bias:
|
219 |
+
pointer.data[start:end] = d
|
220 |
+
else:
|
221 |
+
pointer.data[:, start:end] = d
|
222 |
+
logger.info("Initialize PyTorch weight {}, {}, {}".format(name, array.mean(), pointer.mean()))
|
223 |
+
|
224 |
+
for name, params in orig_model.named_parameters():
|
225 |
+
for n, p in model.named_parameters():
|
226 |
+
if name == n:
|
227 |
+
if params.equal(p):
|
228 |
+
print('--------------------------')
|
229 |
+
print(' %s not changed!' % n)
|
230 |
+
return model
|
231 |
+
|
232 |
+
|
233 |
+
class Attention(nn.Module):
|
234 |
+
def __init__(self, nx, n_ctx, config, scale=False, is_cross_attention=False):
|
235 |
+
super().__init__()
|
236 |
+
|
237 |
+
n_state = nx # in Attention: n_state=768 (nx=n_embd)
|
238 |
+
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
|
239 |
+
assert n_state % config.n_head == 0
|
240 |
+
self.register_buffer(
|
241 |
+
"bias", torch.tril(torch.ones((n_ctx, n_ctx), dtype=torch.uint8)).view(1, 1, n_ctx, n_ctx)
|
242 |
+
)
|
243 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
244 |
+
self.n_head = config.n_head
|
245 |
+
self.split_size = n_state
|
246 |
+
self.scale = scale
|
247 |
+
self.is_cross_attention = is_cross_attention
|
248 |
+
if self.is_cross_attention:
|
249 |
+
self.c_attn = Conv1D(2 * n_state, nx)
|
250 |
+
self.q_attn = Conv1D(n_state, nx)
|
251 |
+
else:
|
252 |
+
self.c_attn = Conv1D(3 * n_state, nx)
|
253 |
+
self.c_proj = Conv1D(n_state, nx)
|
254 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
255 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
256 |
+
self.pruned_heads = set()
|
257 |
+
|
258 |
+
def prune_heads(self, heads):
|
259 |
+
if len(heads) == 0:
|
260 |
+
return
|
261 |
+
heads, index = find_pruneable_heads_and_indices(
|
262 |
+
heads, self.n_head, self.split_size // self.n_head, self.pruned_heads
|
263 |
+
)
|
264 |
+
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
265 |
+
|
266 |
+
# Prune conv1d layers
|
267 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
268 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
269 |
+
|
270 |
+
# Update hyper params
|
271 |
+
self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
|
272 |
+
self.n_head = self.n_head - len(heads)
|
273 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
274 |
+
|
275 |
+
def _attn(self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False):
|
276 |
+
w = torch.matmul(q, k)
|
277 |
+
if self.scale:
|
278 |
+
w = w / (float(v.size(-1)) ** 0.5)
|
279 |
+
nd, ns = w.size(-2), w.size(-1)
|
280 |
+
|
281 |
+
if not self.is_cross_attention:
|
282 |
+
# if only "normal" attention layer implements causal mask
|
283 |
+
mask = self.bias[:, :, ns - nd : ns, :ns]
|
284 |
+
w = torch.where(mask.bool(), w, self.masked_bias.to(w.dtype))
|
285 |
+
|
286 |
+
if attention_mask is not None:
|
287 |
+
# Apply the attention mask
|
288 |
+
w = w + attention_mask
|
289 |
+
|
290 |
+
w = nn.Softmax(dim=-1)(w)
|
291 |
+
w = self.attn_dropout(w)
|
292 |
+
|
293 |
+
# Mask heads if we want to
|
294 |
+
if head_mask is not None:
|
295 |
+
w = w * head_mask
|
296 |
+
|
297 |
+
outputs = [torch.matmul(w, v)]
|
298 |
+
if output_attentions:
|
299 |
+
outputs.append(w)
|
300 |
+
return outputs
|
301 |
+
|
302 |
+
def merge_heads(self, x):
|
303 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
304 |
+
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
|
305 |
+
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
|
306 |
+
|
307 |
+
def split_heads(self, x, k=False):
|
308 |
+
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
|
309 |
+
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
|
310 |
+
if k:
|
311 |
+
return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length)
|
312 |
+
else:
|
313 |
+
return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
314 |
+
|
315 |
+
def forward(
|
316 |
+
self,
|
317 |
+
hidden_states,
|
318 |
+
layer_past=None,
|
319 |
+
attention_mask=None,
|
320 |
+
head_mask=None,
|
321 |
+
encoder_hidden_states=None,
|
322 |
+
encoder_attention_mask=None,
|
323 |
+
use_cache=False,
|
324 |
+
output_attentions=False,
|
325 |
+
):
|
326 |
+
if encoder_hidden_states is not None:
|
327 |
+
assert hasattr(
|
328 |
+
self, "q_attn"
|
329 |
+
), "If class is used as cross attention, the weights `q_attn` have to be defined. Please make sure to instantiate class with `Attention(..., is_cross_attention=True)`."
|
330 |
+
query = self.q_attn(hidden_states)
|
331 |
+
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
332 |
+
attention_mask = encoder_attention_mask
|
333 |
+
else:
|
334 |
+
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
335 |
+
|
336 |
+
query = self.split_heads(query)
|
337 |
+
key = self.split_heads(key, k=True)
|
338 |
+
value = self.split_heads(value)
|
339 |
+
if layer_past is not None:
|
340 |
+
past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below
|
341 |
+
key = torch.cat((past_key, key), dim=-1)
|
342 |
+
value = torch.cat((past_value, value), dim=-2)
|
343 |
+
|
344 |
+
if use_cache is True:
|
345 |
+
present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking
|
346 |
+
else:
|
347 |
+
present = (None,)
|
348 |
+
|
349 |
+
attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions)
|
350 |
+
a = attn_outputs[0]
|
351 |
+
|
352 |
+
a = self.merge_heads(a)
|
353 |
+
a = self.c_proj(a)
|
354 |
+
a = self.resid_dropout(a)
|
355 |
+
|
356 |
+
outputs = [a, present] + attn_outputs[1:]
|
357 |
+
return outputs # a, present, (attentions)
|
358 |
+
|
359 |
+
|
360 |
+
class MLP(nn.Module):
|
361 |
+
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
|
362 |
+
super().__init__()
|
363 |
+
nx = config.n_embd
|
364 |
+
self.c_fc = Conv1D(n_state, nx)
|
365 |
+
self.c_proj = Conv1D(nx, n_state)
|
366 |
+
self.act = ACT2FN[config.activation_function]
|
367 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
368 |
+
|
369 |
+
def forward(self, x):
|
370 |
+
h = self.act(self.c_fc(x))
|
371 |
+
h2 = self.c_proj(h)
|
372 |
+
return self.dropout(h2)
|
373 |
+
|
374 |
+
|
375 |
+
class Block(nn.Module):
|
376 |
+
def __init__(self, n_ctx, config, scale=False):
|
377 |
+
super().__init__()
|
378 |
+
hidden_size = config.n_embd
|
379 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
380 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
381 |
+
self.attn = Attention(hidden_size, n_ctx, config, scale)
|
382 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
383 |
+
if config.add_cross_attention:
|
384 |
+
self.crossattention = Attention(hidden_size, n_ctx, config, scale, is_cross_attention=True)
|
385 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
386 |
+
self.mlp = MLP(inner_dim, config)
|
387 |
+
|
388 |
+
def forward(
|
389 |
+
self,
|
390 |
+
hidden_states,
|
391 |
+
layer_past=None,
|
392 |
+
attention_mask=None,
|
393 |
+
head_mask=None,
|
394 |
+
encoder_hidden_states=None,
|
395 |
+
encoder_attention_mask=None,
|
396 |
+
use_cache=False,
|
397 |
+
output_attentions=False,
|
398 |
+
):
|
399 |
+
attn_outputs = self.attn(
|
400 |
+
hidden_states,
|
401 |
+
layer_past=layer_past,
|
402 |
+
attention_mask=attention_mask,
|
403 |
+
head_mask=head_mask,
|
404 |
+
use_cache=use_cache,
|
405 |
+
output_attentions=output_attentions,
|
406 |
+
)
|
407 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
408 |
+
outputs = attn_outputs[1:]
|
409 |
+
# residual connection
|
410 |
+
hidden_states = attn_output + hidden_states
|
411 |
+
|
412 |
+
if encoder_hidden_states is not None:
|
413 |
+
# add one self-attention block for cross-attention
|
414 |
+
assert hasattr(
|
415 |
+
self, "crossattention"
|
416 |
+
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
417 |
+
cross_attn_outputs = self.crossattention(
|
418 |
+
self.ln_cross_attn(hidden_states),
|
419 |
+
attention_mask=attention_mask,
|
420 |
+
head_mask=head_mask,
|
421 |
+
encoder_hidden_states=encoder_hidden_states,
|
422 |
+
encoder_attention_mask=encoder_attention_mask,
|
423 |
+
output_attentions=output_attentions,
|
424 |
+
)
|
425 |
+
attn_output = cross_attn_outputs[0]
|
426 |
+
# residual connection
|
427 |
+
hidden_states = hidden_states + attn_output
|
428 |
+
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
429 |
+
|
430 |
+
feed_forward_hidden_states = self.mlp(self.ln_1(hidden_states))
|
431 |
+
# residual connection
|
432 |
+
hidden_states = hidden_states + feed_forward_hidden_states
|
433 |
+
|
434 |
+
hidden_states = self.ln_2(hidden_states)
|
435 |
+
|
436 |
+
outputs = [hidden_states] + outputs
|
437 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
438 |
+
|
439 |
+
|
440 |
+
class GPT2PreTrainedModel(PreTrainedModel):
|
441 |
+
"""
|
442 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
443 |
+
models.
|
444 |
+
"""
|
445 |
+
|
446 |
+
config_class = GPT2Config
|
447 |
+
load_tf_weights = load_tf_weights_in_gpt2
|
448 |
+
base_model_prefix = "transformer"
|
449 |
+
|
450 |
+
def __init__(self, *inputs, **kwargs):
|
451 |
+
super().__init__(*inputs, **kwargs)
|
452 |
+
|
453 |
+
def _init_weights(self, module):
|
454 |
+
"""Initialize the weights."""
|
455 |
+
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
|
456 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
457 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
458 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
459 |
+
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
|
460 |
+
module.bias.data.zero_()
|
461 |
+
elif isinstance(module, nn.LayerNorm):
|
462 |
+
module.bias.data.zero_()
|
463 |
+
module.weight.data.fill_(1.0)
|
464 |
+
|
465 |
+
|
466 |
+
@dataclass
|
467 |
+
class GPT2DoubleHeadsModelOutput(ModelOutput):
|
468 |
+
"""
|
469 |
+
Base class for outputs of models predicting if two sentences are consecutive or not.
|
470 |
+
|
471 |
+
Args:
|
472 |
+
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided):
|
473 |
+
Language modeling loss.
|
474 |
+
mc_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`mc_labels` is provided):
|
475 |
+
Multiple choice classification loss.
|
476 |
+
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`):
|
477 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
478 |
+
mc_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
|
479 |
+
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
480 |
+
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
|
481 |
+
List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2,
|
482 |
+
batch_size, num_heads, sequence_length, embed_size_per_head)`).
|
483 |
+
|
484 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
485 |
+
:obj:`past_key_values` input) to speed up sequential decoding.
|
486 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
487 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
488 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
489 |
+
|
490 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
491 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
492 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
|
493 |
+
sequence_length, sequence_length)`.
|
494 |
+
|
495 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
496 |
+
heads.
|
497 |
+
"""
|
498 |
+
|
499 |
+
loss: Optional[torch.FloatTensor] = None
|
500 |
+
mc_loss: Optional[torch.FloatTensor] = None
|
501 |
+
logits: torch.FloatTensor = None
|
502 |
+
mc_logits: torch.FloatTensor = None
|
503 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
504 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
505 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
506 |
+
|
507 |
+
|
508 |
+
GPT2_START_DOCSTRING = r"""
|
509 |
+
|
510 |
+
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
|
511 |
+
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
512 |
+
pruning heads etc.)
|
513 |
+
|
514 |
+
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
515 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
516 |
+
general usage and behavior.
|
517 |
+
|
518 |
+
Parameters:
|
519 |
+
config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model.
|
520 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
521 |
+
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
522 |
+
weights.
|
523 |
+
"""
|
524 |
+
|
525 |
+
GPT2_INPUTS_DOCSTRING = r"""
|
526 |
+
Args:
|
527 |
+
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`):
|
528 |
+
:obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else
|
529 |
+
``past_key_values[0].shape[-2]`` (``sequence_length`` of input past key value states). Indices of input
|
530 |
+
sequence tokens in the vocabulary.
|
531 |
+
|
532 |
+
If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be
|
533 |
+
passed as ``input_ids``.
|
534 |
+
|
535 |
+
Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See
|
536 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
537 |
+
details.
|
538 |
+
|
539 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
540 |
+
past_key_values (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`):
|
541 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
542 |
+
:obj:`past_key_values` output below). Can be used to speed up sequential decoding. The ``input_ids`` which
|
543 |
+
have their past given to this model should not be passed as ``input_ids`` as they have already been
|
544 |
+
computed.
|
545 |
+
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
546 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
547 |
+
|
548 |
+
- 1 for tokens that are **not masked**,
|
549 |
+
- 0 for tokens that are **masked**.
|
550 |
+
|
551 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
552 |
+
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`, `optional`):
|
553 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
554 |
+
1]``:
|
555 |
+
|
556 |
+
- 0 corresponds to a `sentence A` token,
|
557 |
+
- 1 corresponds to a `sentence B` token.
|
558 |
+
|
559 |
+
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
560 |
+
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
561 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
562 |
+
config.max_position_embeddings - 1]``.
|
563 |
+
|
564 |
+
`What are position IDs? <../glossary.html#position-ids>`_
|
565 |
+
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
566 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
567 |
+
|
568 |
+
- 1 indicates the head is **not masked**,
|
569 |
+
- 0 indicates the head is **masked**.
|
570 |
+
|
571 |
+
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
572 |
+
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
573 |
+
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
574 |
+
vectors than the model's internal embedding lookup matrix.
|
575 |
+
|
576 |
+
If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see
|
577 |
+
:obj:`past_key_values`).
|
578 |
+
use_cache (:obj:`bool`, `optional`):
|
579 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
580 |
+
decoding (see :obj:`past_key_values`).
|
581 |
+
output_attentions (:obj:`bool`, `optional`):
|
582 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
583 |
+
tensors for more detail.
|
584 |
+
output_hidden_states (:obj:`bool`, `optional`):
|
585 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
586 |
+
more detail.
|
587 |
+
return_dict (:obj:`bool`, `optional`):
|
588 |
+
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
589 |
+
"""
|
590 |
+
|
591 |
+
|
592 |
+
@add_start_docstrings(
|
593 |
+
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
|
594 |
+
GPT2_START_DOCSTRING,
|
595 |
+
)
|
596 |
+
class GPT2Model(GPT2PreTrainedModel):
|
597 |
+
def __init__(self, config):
|
598 |
+
super().__init__(config)
|
599 |
+
|
600 |
+
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
601 |
+
self.wpe = nn.Embedding(config.n_positions, config.n_embd)
|
602 |
+
if _USE_GROVER:
|
603 |
+
self.emb_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
604 |
+
|
605 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
606 |
+
self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
|
607 |
+
if not _USE_GROVER:
|
608 |
+
self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
609 |
+
|
610 |
+
self.init_weights()
|
611 |
+
|
612 |
+
def get_input_embeddings(self):
|
613 |
+
return self.wte
|
614 |
+
|
615 |
+
def set_input_embeddings(self, new_embeddings):
|
616 |
+
self.wte = new_embeddings
|
617 |
+
|
618 |
+
def _prune_heads(self, heads_to_prune):
|
619 |
+
"""
|
620 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
621 |
+
"""
|
622 |
+
for layer, heads in heads_to_prune.items():
|
623 |
+
self.h[layer].attn.prune_heads(heads)
|
624 |
+
|
625 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
626 |
+
@add_code_sample_docstrings(
|
627 |
+
tokenizer_class=_TOKENIZER_FOR_DOC,
|
628 |
+
checkpoint="gpt2",
|
629 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
630 |
+
config_class=_CONFIG_FOR_DOC,
|
631 |
+
)
|
632 |
+
def forward(
|
633 |
+
self,
|
634 |
+
input_ids=None,
|
635 |
+
past_key_values=None,
|
636 |
+
attention_mask=None,
|
637 |
+
token_type_ids=None,
|
638 |
+
position_ids=None,
|
639 |
+
head_mask=None,
|
640 |
+
inputs_embeds=None,
|
641 |
+
encoder_hidden_states=None,
|
642 |
+
encoder_attention_mask=None,
|
643 |
+
use_cache=None,
|
644 |
+
output_attentions=None,
|
645 |
+
output_hidden_states=None,
|
646 |
+
return_dict=None,
|
647 |
+
):
|
648 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
649 |
+
output_hidden_states = (
|
650 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
651 |
+
)
|
652 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
653 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
654 |
+
|
655 |
+
if input_ids is not None and inputs_embeds is not None:
|
656 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
657 |
+
elif input_ids is not None:
|
658 |
+
input_shape = input_ids.size()
|
659 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
660 |
+
batch_size = input_ids.shape[0]
|
661 |
+
elif inputs_embeds is not None:
|
662 |
+
input_shape = inputs_embeds.size()[:-1]
|
663 |
+
batch_size = inputs_embeds.shape[0]
|
664 |
+
else:
|
665 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
666 |
+
|
667 |
+
if token_type_ids is not None:
|
668 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
669 |
+
if position_ids is not None:
|
670 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
671 |
+
|
672 |
+
if past_key_values is None:
|
673 |
+
past_length = 0
|
674 |
+
past_key_values = [None] * len(self.h)
|
675 |
+
else:
|
676 |
+
past_length = past_key_values[0][0].size(-2)
|
677 |
+
if position_ids is None:
|
678 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
679 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
680 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
681 |
+
|
682 |
+
# Attention mask.
|
683 |
+
if attention_mask is not None:
|
684 |
+
assert batch_size > 0, "batch_size has to be defined and > 0"
|
685 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
686 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
687 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
688 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
689 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
690 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
691 |
+
attention_mask = attention_mask[:, None, None, :]
|
692 |
+
|
693 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
694 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
695 |
+
# positions we want to attend and -10000.0 for masked positions.
|
696 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
697 |
+
# effectively the same as removing these entirely.
|
698 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
699 |
+
attention_mask = (1.0 - attention_mask) * -10000.0
|
700 |
+
|
701 |
+
# If a 2D ou 3D attention mask is provided for the cross-attention
|
702 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
703 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
704 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
705 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
706 |
+
if encoder_attention_mask is None:
|
707 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
708 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
709 |
+
else:
|
710 |
+
encoder_attention_mask = None
|
711 |
+
|
712 |
+
# Prepare head mask if needed
|
713 |
+
# 1.0 in head_mask indicate we keep the head
|
714 |
+
# attention_probs has shape bsz x n_heads x N x N
|
715 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
716 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
717 |
+
|
718 |
+
if inputs_embeds is None:
|
719 |
+
inputs_embeds = self.wte(input_ids)
|
720 |
+
position_embeds = self.wpe(position_ids)
|
721 |
+
hidden_states = inputs_embeds + position_embeds
|
722 |
+
|
723 |
+
if token_type_ids is not None:
|
724 |
+
token_type_embeds = self.wte(token_type_ids)
|
725 |
+
hidden_states = hidden_states + token_type_embeds
|
726 |
+
|
727 |
+
hidden_states = self.drop(hidden_states)
|
728 |
+
if _USE_GROVER:
|
729 |
+
hidden_states = self.emb_norm(hidden_states)
|
730 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
731 |
+
|
732 |
+
presents = () if use_cache else None
|
733 |
+
all_self_attentions = () if output_attentions else None
|
734 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
735 |
+
all_hidden_states = () if output_hidden_states else None
|
736 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
737 |
+
if output_hidden_states:
|
738 |
+
all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
|
739 |
+
|
740 |
+
if getattr(self.config, "gradient_checkpointing", False):
|
741 |
+
|
742 |
+
def create_custom_forward(module):
|
743 |
+
def custom_forward(*inputs):
|
744 |
+
# checkpointing only works with tuple returns, not with lists
|
745 |
+
return tuple(output for output in module(*inputs, use_cache, output_attentions))
|
746 |
+
|
747 |
+
return custom_forward
|
748 |
+
|
749 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
750 |
+
create_custom_forward(block),
|
751 |
+
hidden_states,
|
752 |
+
layer_past,
|
753 |
+
attention_mask,
|
754 |
+
head_mask[i],
|
755 |
+
encoder_hidden_states,
|
756 |
+
encoder_attention_mask,
|
757 |
+
)
|
758 |
+
else:
|
759 |
+
outputs = block(
|
760 |
+
hidden_states,
|
761 |
+
layer_past=layer_past,
|
762 |
+
attention_mask=attention_mask,
|
763 |
+
head_mask=head_mask[i],
|
764 |
+
encoder_hidden_states=encoder_hidden_states,
|
765 |
+
encoder_attention_mask=encoder_attention_mask,
|
766 |
+
use_cache=use_cache,
|
767 |
+
output_attentions=output_attentions,
|
768 |
+
)
|
769 |
+
|
770 |
+
hidden_states, present = outputs[:2]
|
771 |
+
if use_cache is True:
|
772 |
+
presents = presents + (present,)
|
773 |
+
|
774 |
+
if output_attentions:
|
775 |
+
all_self_attentions = all_self_attentions + (outputs[2],)
|
776 |
+
if self.config.add_cross_attention:
|
777 |
+
all_cross_attentions = all_cross_attentions + (outputs[3],)
|
778 |
+
|
779 |
+
if not _USE_GROVER:
|
780 |
+
hidden_states = self.ln_f(hidden_states)
|
781 |
+
|
782 |
+
hidden_states = hidden_states.view(*output_shape)
|
783 |
+
# Add last hidden state
|
784 |
+
if output_hidden_states:
|
785 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
786 |
+
|
787 |
+
if not return_dict:
|
788 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
789 |
+
|
790 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
791 |
+
last_hidden_state=hidden_states,
|
792 |
+
past_key_values=presents,
|
793 |
+
hidden_states=all_hidden_states,
|
794 |
+
attentions=all_self_attentions,
|
795 |
+
cross_attentions=all_cross_attentions,
|
796 |
+
)
|
797 |
+
|
798 |
+
|
799 |
+
@add_start_docstrings(
|
800 |
+
"""
|
801 |
+
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
802 |
+
embeddings).
|
803 |
+
""",
|
804 |
+
GPT2_START_DOCSTRING,
|
805 |
+
)
|
806 |
+
class GPT2LMHeadModel(GPT2PreTrainedModel):
|
807 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"]
|
808 |
+
|
809 |
+
def __init__(self, config):
|
810 |
+
super().__init__(config)
|
811 |
+
self.transformer = GPT2Model(config)
|
812 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
813 |
+
|
814 |
+
self.init_weights()
|
815 |
+
|
816 |
+
def get_output_embeddings(self):
|
817 |
+
return self.lm_head
|
818 |
+
|
819 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
820 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
821 |
+
# only last token for inputs_ids if past is defined in kwargs
|
822 |
+
if past:
|
823 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
824 |
+
if token_type_ids is not None:
|
825 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
826 |
+
|
827 |
+
attention_mask = kwargs.get("attention_mask", None)
|
828 |
+
position_ids = kwargs.get("position_ids", None)
|
829 |
+
|
830 |
+
if attention_mask is not None and position_ids is None:
|
831 |
+
# create position_ids on the fly for batch generation
|
832 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
833 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
834 |
+
if past:
|
835 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
836 |
+
else:
|
837 |
+
position_ids = None
|
838 |
+
return {
|
839 |
+
"input_ids": input_ids,
|
840 |
+
"past_key_values": past,
|
841 |
+
"use_cache": kwargs.get("use_cache"),
|
842 |
+
"position_ids": position_ids,
|
843 |
+
"attention_mask": attention_mask,
|
844 |
+
"token_type_ids": token_type_ids,
|
845 |
+
}
|
846 |
+
|
847 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
848 |
+
@add_code_sample_docstrings(
|
849 |
+
tokenizer_class=_TOKENIZER_FOR_DOC,
|
850 |
+
checkpoint="gpt2",
|
851 |
+
output_type= CausalLMOutputWithCrossAttentions,
|
852 |
+
config_class=_CONFIG_FOR_DOC,
|
853 |
+
)
|
854 |
+
def forward(
|
855 |
+
self,
|
856 |
+
input_ids=None,
|
857 |
+
past_key_values=None,
|
858 |
+
attention_mask=None,
|
859 |
+
token_type_ids=None,
|
860 |
+
position_ids=None,
|
861 |
+
head_mask=None,
|
862 |
+
inputs_embeds=None,
|
863 |
+
encoder_hidden_states=None,
|
864 |
+
encoder_attention_mask=None,
|
865 |
+
labels=None,
|
866 |
+
use_cache=None,
|
867 |
+
output_attentions=None,
|
868 |
+
output_hidden_states=None,
|
869 |
+
return_dict=None,
|
870 |
+
):
|
871 |
+
r"""
|
872 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
873 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
874 |
+
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
|
875 |
+
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
876 |
+
"""
|
877 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
878 |
+
|
879 |
+
transformer_outputs = self.transformer(
|
880 |
+
input_ids,
|
881 |
+
past_key_values=past_key_values,
|
882 |
+
attention_mask=attention_mask,
|
883 |
+
token_type_ids=token_type_ids,
|
884 |
+
position_ids=position_ids,
|
885 |
+
head_mask=head_mask,
|
886 |
+
inputs_embeds=inputs_embeds,
|
887 |
+
encoder_hidden_states=encoder_hidden_states,
|
888 |
+
encoder_attention_mask=encoder_attention_mask,
|
889 |
+
use_cache=use_cache,
|
890 |
+
output_attentions=output_attentions,
|
891 |
+
output_hidden_states=output_hidden_states,
|
892 |
+
return_dict=return_dict,
|
893 |
+
)
|
894 |
+
hidden_states = transformer_outputs[0]
|
895 |
+
|
896 |
+
lm_logits = self.lm_head(hidden_states)
|
897 |
+
|
898 |
+
loss = None
|
899 |
+
if labels is not None:
|
900 |
+
# Shift so that tokens < n predict n
|
901 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
902 |
+
shift_labels = labels[..., 1:].contiguous()
|
903 |
+
# Flatten the tokens
|
904 |
+
loss_fct = CrossEntropyLoss()
|
905 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
906 |
+
|
907 |
+
if not return_dict:
|
908 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
909 |
+
return ((loss,) + output) if loss is not None else output
|
910 |
+
|
911 |
+
return CausalLMOutputWithCrossAttentions(
|
912 |
+
loss=loss,
|
913 |
+
logits=lm_logits,
|
914 |
+
past_key_values=transformer_outputs.past_key_values,
|
915 |
+
hidden_states=transformer_outputs.hidden_states,
|
916 |
+
attentions=transformer_outputs.attentions,
|
917 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
918 |
+
)
|
919 |
+
|
920 |
+
|
921 |
+
@add_start_docstrings(
|
922 |
+
"""
|
923 |
+
The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
|
924 |
+
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
|
925 |
+
input embeddings, the classification head takes as input the input of a specified classification token index in the
|
926 |
+
input sequence).
|
927 |
+
""",
|
928 |
+
GPT2_START_DOCSTRING,
|
929 |
+
)
|
930 |
+
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
931 |
+
def __init__(self, config):
|
932 |
+
super().__init__(config)
|
933 |
+
config.num_labels = 1
|
934 |
+
self.transformer = GPT2Model(config)
|
935 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
936 |
+
self.multiple_choice_head = SequenceSummary(config)
|
937 |
+
|
938 |
+
self.init_weights()
|
939 |
+
|
940 |
+
def get_output_embeddings(self):
|
941 |
+
return self.lm_head
|
942 |
+
|
943 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
944 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
945 |
+
# only last token for inputs_ids if past is defined in kwargs
|
946 |
+
if past:
|
947 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
948 |
+
if token_type_ids is not None:
|
949 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
950 |
+
|
951 |
+
attention_mask = kwargs.get("attention_mask", None)
|
952 |
+
position_ids = kwargs.get("position_ids", None)
|
953 |
+
|
954 |
+
if attention_mask is not None and position_ids is None:
|
955 |
+
# create position_ids on the fly for batch generation
|
956 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
957 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
958 |
+
if past:
|
959 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
960 |
+
else:
|
961 |
+
position_ids = None
|
962 |
+
|
963 |
+
return {
|
964 |
+
"input_ids": input_ids,
|
965 |
+
"past_key_values": past,
|
966 |
+
"use_cache": kwargs.get("use_cache"),
|
967 |
+
"position_ids": position_ids,
|
968 |
+
"attention_mask": attention_mask,
|
969 |
+
"token_type_ids": token_type_ids,
|
970 |
+
}
|
971 |
+
|
972 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
973 |
+
@replace_return_docstrings(output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
|
974 |
+
def forward(
|
975 |
+
self,
|
976 |
+
input_ids=None,
|
977 |
+
past_key_values=None,
|
978 |
+
attention_mask=None,
|
979 |
+
token_type_ids=None,
|
980 |
+
position_ids=None,
|
981 |
+
head_mask=None,
|
982 |
+
inputs_embeds=None,
|
983 |
+
mc_token_ids=None,
|
984 |
+
labels=None,
|
985 |
+
mc_labels=None,
|
986 |
+
use_cache=None,
|
987 |
+
output_attentions=None,
|
988 |
+
output_hidden_states=None,
|
989 |
+
return_dict=None,
|
990 |
+
**kwargs,
|
991 |
+
):
|
992 |
+
r"""
|
993 |
+
mc_token_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input):
|
994 |
+
Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) -
|
995 |
+
1[``.
|
996 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
997 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
998 |
+
``labels = input_ids`` Indices are selected in ``[-1, 0, ..., config.vocab_size]`` All labels set to
|
999 |
+
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
1000 |
+
mc_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size)`, `optional`):
|
1001 |
+
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
|
1002 |
+
num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see
|
1003 |
+
`input_ids` above)
|
1004 |
+
|
1005 |
+
Return:
|
1006 |
+
|
1007 |
+
Example::
|
1008 |
+
|
1009 |
+
>>> import torch
|
1010 |
+
>>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
|
1011 |
+
|
1012 |
+
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
1013 |
+
>>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
|
1014 |
+
|
1015 |
+
>>> # Add a [CLS] to the vocabulary (we should train it also!)
|
1016 |
+
>>> num_added_tokens = tokenizer.add_special_tokens({'cls_token': '[CLS]'})
|
1017 |
+
|
1018 |
+
>>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size
|
1019 |
+
|
1020 |
+
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
|
1021 |
+
>>> encoded_choices = [tokenizer.encode(s) for s in choices]
|
1022 |
+
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
|
1023 |
+
|
1024 |
+
>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2
|
1025 |
+
>>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1
|
1026 |
+
|
1027 |
+
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
|
1028 |
+
>>> lm_logits = outputs.lm_logits
|
1029 |
+
>>> mc_logits = outputs.mc_logits
|
1030 |
+
|
1031 |
+
"""
|
1032 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1033 |
+
|
1034 |
+
transformer_outputs = self.transformer(
|
1035 |
+
input_ids,
|
1036 |
+
past_key_values=past_key_values,
|
1037 |
+
attention_mask=attention_mask,
|
1038 |
+
token_type_ids=token_type_ids,
|
1039 |
+
position_ids=position_ids,
|
1040 |
+
head_mask=head_mask,
|
1041 |
+
inputs_embeds=inputs_embeds,
|
1042 |
+
use_cache=use_cache,
|
1043 |
+
output_attentions=output_attentions,
|
1044 |
+
output_hidden_states=output_hidden_states,
|
1045 |
+
return_dict=return_dict,
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
hidden_states = transformer_outputs[0]
|
1049 |
+
|
1050 |
+
lm_logits = self.lm_head(hidden_states)
|
1051 |
+
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
|
1052 |
+
|
1053 |
+
mc_loss = None
|
1054 |
+
if mc_labels is not None:
|
1055 |
+
loss_fct = CrossEntropyLoss()
|
1056 |
+
mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
|
1057 |
+
lm_loss = None
|
1058 |
+
if labels is not None:
|
1059 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1060 |
+
shift_labels = labels[..., 1:].contiguous()
|
1061 |
+
loss_fct = CrossEntropyLoss()
|
1062 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1063 |
+
|
1064 |
+
if not return_dict:
|
1065 |
+
output = (lm_logits, mc_logits) + transformer_outputs[1:]
|
1066 |
+
if mc_loss is not None:
|
1067 |
+
output = (mc_loss,) + output
|
1068 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1069 |
+
|
1070 |
+
return GPT2DoubleHeadsModelOutput(
|
1071 |
+
loss=lm_loss,
|
1072 |
+
mc_loss=mc_loss,
|
1073 |
+
logits=lm_logits,
|
1074 |
+
mc_logits=mc_logits,
|
1075 |
+
past_key_values=transformer_outputs.past_key_values,
|
1076 |
+
hidden_states=transformer_outputs.hidden_states,
|
1077 |
+
attentions=transformer_outputs.attentions,
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
|
1081 |
+
@add_start_docstrings(
|
1082 |
+
"""
|
1083 |
+
The GPT2 Model transformer with a sequence classification head on top (linear layer).
|
1084 |
+
|
1085 |
+
:class:`~transformers.GPT2ForSequenceClassification` uses the last token in order to do the classification, as
|
1086 |
+
other causal models (e.g. GPT-1) do.
|
1087 |
+
|
1088 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1089 |
+
:obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each
|
1090 |
+
row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot
|
1091 |
+
guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take
|
1092 |
+
the last value in each row of the batch).
|
1093 |
+
""",
|
1094 |
+
GPT2_START_DOCSTRING,
|
1095 |
+
)
|
1096 |
+
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
1097 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"]
|
1098 |
+
|
1099 |
+
def __init__(self, config):
|
1100 |
+
super().__init__(config)
|
1101 |
+
self.num_labels = config.num_labels
|
1102 |
+
self.transformer = GPT2Model(config)
|
1103 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
1104 |
+
|
1105 |
+
self.init_weights()
|
1106 |
+
|
1107 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1108 |
+
@add_code_sample_docstrings(
|
1109 |
+
tokenizer_class=_TOKENIZER_FOR_DOC,
|
1110 |
+
checkpoint="microsoft/dialogrpt",
|
1111 |
+
output_type=SequenceClassifierOutputWithPast,
|
1112 |
+
config_class=_CONFIG_FOR_DOC,
|
1113 |
+
)
|
1114 |
+
def forward(
|
1115 |
+
self,
|
1116 |
+
input_ids=None,
|
1117 |
+
past_key_values=None,
|
1118 |
+
attention_mask=None,
|
1119 |
+
token_type_ids=None,
|
1120 |
+
position_ids=None,
|
1121 |
+
head_mask=None,
|
1122 |
+
inputs_embeds=None,
|
1123 |
+
labels=None,
|
1124 |
+
use_cache=None,
|
1125 |
+
output_attentions=None,
|
1126 |
+
output_hidden_states=None,
|
1127 |
+
return_dict=None,
|
1128 |
+
):
|
1129 |
+
r"""
|
1130 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1131 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
1132 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
1133 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1134 |
+
"""
|
1135 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1136 |
+
|
1137 |
+
transformer_outputs = self.transformer(
|
1138 |
+
input_ids,
|
1139 |
+
past_key_values=past_key_values,
|
1140 |
+
attention_mask=attention_mask,
|
1141 |
+
token_type_ids=token_type_ids,
|
1142 |
+
position_ids=position_ids,
|
1143 |
+
head_mask=head_mask,
|
1144 |
+
inputs_embeds=inputs_embeds,
|
1145 |
+
use_cache=use_cache,
|
1146 |
+
output_attentions=output_attentions,
|
1147 |
+
output_hidden_states=output_hidden_states,
|
1148 |
+
return_dict=return_dict,
|
1149 |
+
)
|
1150 |
+
hidden_states = transformer_outputs[0]
|
1151 |
+
logits = self.score(hidden_states)
|
1152 |
+
|
1153 |
+
if input_ids is not None:
|
1154 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
1155 |
+
else:
|
1156 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
1157 |
+
|
1158 |
+
assert (
|
1159 |
+
self.config.pad_token_id is not None or batch_size == 1
|
1160 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
1161 |
+
if self.config.pad_token_id is None:
|
1162 |
+
sequence_lengths = -1
|
1163 |
+
else:
|
1164 |
+
if input_ids is not None:
|
1165 |
+
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
1166 |
+
else:
|
1167 |
+
sequence_lengths = -1
|
1168 |
+
logger.warning(
|
1169 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1170 |
+
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1171 |
+
)
|
1172 |
+
|
1173 |
+
pooled_logits = logits[range(batch_size), sequence_lengths]
|
1174 |
+
|
1175 |
+
loss = None
|
1176 |
+
if labels is not None:
|
1177 |
+
if self.num_labels == 1:
|
1178 |
+
# We are doing regression
|
1179 |
+
loss_fct = MSELoss()
|
1180 |
+
loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1))
|
1181 |
+
else:
|
1182 |
+
loss_fct = CrossEntropyLoss()
|
1183 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1184 |
+
|
1185 |
+
if not return_dict:
|
1186 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1187 |
+
return ((loss,) + output) if loss is not None else output
|
1188 |
+
|
1189 |
+
return SequenceClassifierOutputWithPast(
|
1190 |
+
loss=loss,
|
1191 |
+
logits=pooled_logits,
|
1192 |
+
past_key_values=transformer_outputs.past_key_values,
|
1193 |
+
hidden_states=transformer_outputs.hidden_states,
|
1194 |
+
attentions=transformer_outputs.attentions,
|
1195 |
+
)
|
1196 |
+
|
{pages → backend}/preprocess.py
RENAMED
File without changes
|
{pages → backend}/processor.py
RENAMED
@@ -122,8 +122,7 @@ def write():
|
|
122 |
|
123 |
st.sidebar.title("Model Selector")
|
124 |
model_selector = st.sidebar.selectbox(
|
125 |
-
"""Select None to enable further filters""",
|
126 |
-
options=MODELS_to_SELECT,
|
127 |
)
|
128 |
if model_selector == "None":
|
129 |
keep_emojis = st.sidebar.checkbox("Keep emojis", False)
|
|
|
122 |
|
123 |
st.sidebar.title("Model Selector")
|
124 |
model_selector = st.sidebar.selectbox(
|
125 |
+
"""Select None to enable further filters""", options=MODELS_to_SELECT, index=3
|
|
|
126 |
)
|
127 |
if model_selector == "None":
|
128 |
keep_emojis = st.sidebar.checkbox("Keep emojis", False)
|
backend/services.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import requests
|
5 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline, set_seed
|
6 |
+
from .modeling_gpt2 import GPT2LMHeadModel as GROVERLMHeadModel
|
7 |
+
from .preprocess import ArabertPreprocessor
|
8 |
+
|
9 |
+
|
10 |
+
# Taken and Modified from https://huggingface.co/spaces/flax-community/chef-transformer/blob/main/app.py
|
11 |
+
class TextGeneration:
|
12 |
+
def __init__(self):
|
13 |
+
self.debug = False
|
14 |
+
self.generation_pipline = {}
|
15 |
+
self.preprocessor = ArabertPreprocessor(model_name="aragpt2-mega")
|
16 |
+
self.tokenizer = GPT2Tokenizer.from_pretrained(
|
17 |
+
"aubmindlab/aragpt2-mega", use_fast=False
|
18 |
+
)
|
19 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
20 |
+
self.API_KEY = os.getenv("API_KEY")
|
21 |
+
self.headers = {"Authorization": f"Bearer {self.API_KEY}"}
|
22 |
+
# self.model_names_or_paths = {
|
23 |
+
# "aragpt2-medium": "D:/ML/Models/aragpt2-medium",
|
24 |
+
# "aragpt2-base": "D:/ML/Models/aragpt2-base",
|
25 |
+
# }
|
26 |
+
self.model_names_or_paths = {
|
27 |
+
"aragpt2-medium": "https://huggingface.co/aubmindlab/aragpt2-medium",
|
28 |
+
"aragpt2-base": "https://huggingface.co/aubmindlab/aragpt2-base",
|
29 |
+
"aragpt2-large": "https://huggingface.co/aubmindlab/aragpt2-large",
|
30 |
+
"aragpt2-mega": "https://huggingface.co/aubmindlab/aragpt2-mega",
|
31 |
+
}
|
32 |
+
set_seed(42)
|
33 |
+
|
34 |
+
def load_pipeline(self):
|
35 |
+
for model_name, model_path in self.model_names_or_paths.items():
|
36 |
+
if "base" in model_name or "medium" in model_name:
|
37 |
+
self.generation_pipline[model_name] = pipeline(
|
38 |
+
"text-generation",
|
39 |
+
model=GPT2LMHeadModel.from_pretrained(model_path),
|
40 |
+
tokenizer=self.tokenizer,
|
41 |
+
device=-1,
|
42 |
+
)
|
43 |
+
else:
|
44 |
+
self.generation_pipline[model_name] = pipeline(
|
45 |
+
"text-generation",
|
46 |
+
model=GROVERLMHeadModel.from_pretrained(model_path),
|
47 |
+
tokenizer=self.tokenizer,
|
48 |
+
device=-1,
|
49 |
+
)
|
50 |
+
|
51 |
+
def load(self):
|
52 |
+
if not self.debug:
|
53 |
+
self.load_pipeline()
|
54 |
+
|
55 |
+
def generate(
|
56 |
+
self,
|
57 |
+
model_name,
|
58 |
+
prompt,
|
59 |
+
max_new_tokens: int,
|
60 |
+
temperature: float,
|
61 |
+
top_k: int,
|
62 |
+
top_p: float,
|
63 |
+
repetition_penalty: float,
|
64 |
+
no_repeat_ngram_size: int,
|
65 |
+
do_sample: bool,
|
66 |
+
num_beams: int,
|
67 |
+
):
|
68 |
+
prompt = self.preprocessor.preprocess(prompt)
|
69 |
+
return_full_text = False
|
70 |
+
return_text = True
|
71 |
+
num_return_sequences = 1
|
72 |
+
pad_token_id = 0
|
73 |
+
eos_token_id = 0
|
74 |
+
input_tok = self.tokenizer.tokenize(prompt)
|
75 |
+
max_length = len(input_tok) + max_new_tokens
|
76 |
+
if max_length > 1024:
|
77 |
+
max_length = 1024
|
78 |
+
if not self.debug:
|
79 |
+
generated_text = self.generation_pipline[model_name.lower()](
|
80 |
+
prompt,
|
81 |
+
max_length=max_length,
|
82 |
+
temperature=temperature,
|
83 |
+
top_k=top_k,
|
84 |
+
top_p=top_p,
|
85 |
+
repetition_penalty=repetition_penalty,
|
86 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
87 |
+
pad_token_id=pad_token_id,
|
88 |
+
eos_token_id=eos_token_id,
|
89 |
+
return_full_text=return_full_text,
|
90 |
+
return_text=return_text,
|
91 |
+
do_sample=do_sample,
|
92 |
+
num_beams=num_beams,
|
93 |
+
num_return_sequences=num_return_sequences,
|
94 |
+
)[0]["generated_text"]
|
95 |
+
else:
|
96 |
+
generated_text = self.generate_by_query(
|
97 |
+
prompt,
|
98 |
+
model_name,
|
99 |
+
max_length=max_length,
|
100 |
+
temperature=temperature,
|
101 |
+
top_k=top_k,
|
102 |
+
top_p=top_p,
|
103 |
+
repetition_penalty=repetition_penalty,
|
104 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
105 |
+
pad_token_id=pad_token_id,
|
106 |
+
eos_token_id=eos_token_id,
|
107 |
+
return_full_text=return_full_text,
|
108 |
+
return_text=return_text,
|
109 |
+
do_sample=do_sample,
|
110 |
+
num_beams=num_beams,
|
111 |
+
num_return_sequences=num_return_sequences,
|
112 |
+
)
|
113 |
+
# print(generated_text)
|
114 |
+
if isinstance(generated_text, dict):
|
115 |
+
if "error" in generated_text:
|
116 |
+
if "is currently loading" in generated_text["error"]:
|
117 |
+
return f"Model is currently loading, estimated time is {generated_text['estimated_time']}"
|
118 |
+
return generated_text["error"]
|
119 |
+
else:
|
120 |
+
return "Something happened 🤷♂️!!"
|
121 |
+
else:
|
122 |
+
generated_text = generated_text[0]["generated_text"]
|
123 |
+
return self.preprocessor.unpreprocess(generated_text)
|
124 |
+
|
125 |
+
def query(self, payload, model_name):
|
126 |
+
data = json.dumps(payload)
|
127 |
+
url = (
|
128 |
+
"https://api-inference.huggingface.co/models/aubmindlab/"
|
129 |
+
+ model_name.lower()
|
130 |
+
)
|
131 |
+
response = requests.request("POST", url, headers=self.headers, data=data)
|
132 |
+
return json.loads(response.content.decode("utf-8"))
|
133 |
+
|
134 |
+
def generate_by_query(
|
135 |
+
self,
|
136 |
+
prompt: str,
|
137 |
+
model_name: str,
|
138 |
+
max_length: int,
|
139 |
+
temperature: float,
|
140 |
+
top_k: int,
|
141 |
+
top_p: float,
|
142 |
+
repetition_penalty: float,
|
143 |
+
no_repeat_ngram_size: int,
|
144 |
+
pad_token_id: int,
|
145 |
+
eos_token_id: int,
|
146 |
+
return_full_text: int,
|
147 |
+
return_text: int,
|
148 |
+
do_sample: bool,
|
149 |
+
num_beams: int,
|
150 |
+
num_return_sequences: int,
|
151 |
+
):
|
152 |
+
payload = {
|
153 |
+
"inputs": prompt,
|
154 |
+
"parameters": {
|
155 |
+
"max_length ": max_length,
|
156 |
+
"top_k": top_k,
|
157 |
+
"top_p": top_p,
|
158 |
+
"temperature": temperature,
|
159 |
+
"repetition_penalty": repetition_penalty,
|
160 |
+
"no_repeat_ngram_size": no_repeat_ngram_size,
|
161 |
+
"pad_token_id": pad_token_id,
|
162 |
+
"eos_token_id": eos_token_id,
|
163 |
+
"return_full_text": return_full_text,
|
164 |
+
"return_text": return_text,
|
165 |
+
"pad_token_id": pad_token_id,
|
166 |
+
"do_sample": do_sample,
|
167 |
+
"num_beams": num_beams,
|
168 |
+
"num_return_sequences": num_return_sequences,
|
169 |
+
},
|
170 |
+
"options": {
|
171 |
+
"use_cache": True,
|
172 |
+
},
|
173 |
+
}
|
174 |
+
return self.query(payload, model_name)
|
requirements.txt
CHANGED
@@ -4,4 +4,6 @@ python-bidi==0.4.2
|
|
4 |
PyArabic
|
5 |
farasapy==0.0.14
|
6 |
emoji==1.4.2
|
7 |
-
awesome_streamlit
|
|
|
|
|
|
4 |
PyArabic
|
5 |
farasapy==0.0.14
|
6 |
emoji==1.4.2
|
7 |
+
awesome_streamlit
|
8 |
+
torch
|
9 |
+
transformers==4.10.0
|
test.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#%%
|
2 |
+
from transformers import GPT2Tokenizer
|
3 |
+
|
4 |
+
# %%
|
5 |
+
tok = GPT2Tokenizer.from_pretrained("D:/ML/Models/aragpt2-medium", use_fast=False)
|
6 |
+
# %%
|
7 |
+
tok.pad_token = tok.eos_token
|
8 |
+
#%%
|
9 |
+
tok.pad_token_id = [tok.eos_token_id]
|
10 |
+
# %%
|