File size: 26,254 Bytes
9791162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
import warnings

import numpy as np
import resampy
import torch
import tqdm

import crepe


__all__ = ['CENTS_PER_BIN',
           'MAX_FMAX',
           'PITCH_BINS',
           'SAMPLE_RATE',
           'WINDOW_SIZE',
           'UNVOICED',
           'embed',
           'embed_from_file',
           'embed_from_file_to_file',
           'embed_from_files_to_files',
           'infer',
           'predict',
           'predict_from_file',
           'predict_from_file_to_file',
           'predict_from_files_to_files',
           'preprocess',
           'postprocess',
           'resample']


###############################################################################
# Constants
###############################################################################


CENTS_PER_BIN = 20  # cents
MAX_FMAX = 2006.  # hz
PITCH_BINS = 360
SAMPLE_RATE = 16000  # hz
WINDOW_SIZE = 1024  # samples
UNVOICED = np.nan


###############################################################################
# Crepe pitch prediction
###############################################################################


def predict(audio,

            sample_rate,

            hop_length=None,

            fmin=50.,

            fmax=MAX_FMAX,

            model='full',

            decoder=crepe.decode.viterbi,

            return_harmonicity=False,

            return_periodicity=False,

            batch_size=None,

            device='cpu',

            pad=True):
    """Performs pitch estimation



    Arguments

        audio (torch.tensor [shape=(1, time)])

            The audio signal

        sample_rate (int)

            The sampling rate in Hz

        hop_length (int)

            The hop_length in samples

        fmin (float)

            The minimum allowable frequency in Hz

        fmax (float)

            The maximum allowable frequency in Hz

        model (string)

            The model capacity. One of 'full' or 'tiny'.

        decoder (function)

            The decoder to use. See decode.py for decoders.

        return_harmonicity (bool) [DEPRECATED]

            Whether to also return the network confidence

        return_periodicity (bool)

            Whether to also return the network confidence

        batch_size (int)

            The number of frames per batch

        device (string)

            The device used to run inference

        pad (bool)

            Whether to zero-pad the audio



    Returns

        pitch (torch.tensor [shape=(1, 1 + int(time // hop_length))])

        (Optional) periodicity (torch.tensor

                                [shape=(1, 1 + int(time // hop_length))])

    """
    # Deprecate return_harmonicity
    if return_harmonicity:
        message = (
            'The crepe return_harmonicity argument is deprecated and '
            'will be removed in a future release. Please use '
            'return_periodicity. Rationale: if network confidence measured '
            'harmonics, the value would be low for non-harmonic, periodic '
            'sounds (e.g., sine waves). But this is not observed.')
        warnings.warn(message, DeprecationWarning)
        return_periodicity = return_harmonicity

    results = []

    # Postprocessing breaks gradients, so just don't compute them
    with torch.no_grad():

        # Preprocess audio
        generator = preprocess(audio,
                               sample_rate,
                               hop_length,
                               batch_size,
                               device,
                               pad)
        for frames in generator:

            # Infer independent probabilities for each pitch bin
            probabilities = infer(frames, model)

            # shape=(batch, 360, time / hop_length)
            probabilities = probabilities.reshape(
                audio.size(0), -1, PITCH_BINS).transpose(1, 2)

            # Convert probabilities to F0 and periodicity
            result = postprocess(probabilities,
                                 fmin,
                                 fmax,
                                 decoder,
                                 return_harmonicity,
                                 return_periodicity)

            # Place on same device as audio to allow very long inputs
            if isinstance(result, tuple):
                result = (result[0].to(audio.device),
                          result[1].to(audio.device))
            else:
                 result = result.to(audio.device)

            results.append(result)

    # Split pitch and periodicity
    if return_periodicity:
        pitch, periodicity = zip(*results)
        return torch.cat(pitch, 1), torch.cat(periodicity, 1)

    # Concatenate
    return torch.cat(results, 1)


def predict_from_file(audio_file,

                      hop_length=None,

                      fmin=50.,

                      fmax=MAX_FMAX,

                      model='full',

                      decoder=crepe.decode.viterbi,

                      return_harmonicity=False,

                      return_periodicity=False,

                      batch_size=None,

                      device='cpu',

                      pad=True):
    """Performs pitch estimation from file on disk



    Arguments

        audio_file (string)

            The file to perform pitch tracking on

        hop_length (int)

            The hop_length in samples

        fmin (float)

            The minimum allowable frequency in Hz

        fmax (float)

            The maximum allowable frequency in Hz

        model (string)

            The model capacity. One of 'full' or 'tiny'.

        decoder (function)

            The decoder to use. See decode.py for decoders.

        return_harmonicity (bool) [DEPRECATED]

            Whether to also return the network confidence

        return_periodicity (bool)

            Whether to also return the network confidence

        batch_size (int)

            The number of frames per batch

        device (string)

            The device used to run inference

        pad (bool)

            Whether to zero-pad the audio



    Returns

        pitch (torch.tensor [shape=(1, 1 + int(time // hop_length))])

        (Optional) periodicity (torch.tensor

                                [shape=(1, 1 + int(time // hop_length))])

    """
    # Load audio
    audio, sample_rate = crepe.load.audio(audio_file)

    # Predict
    return predict(audio,
                   sample_rate,
                   hop_length,
                   fmin,
                   fmax,
                   model,
                   decoder,
                   return_harmonicity,
                   return_periodicity,
                   batch_size,
                   device,
                   pad)


def predict_from_file_to_file(audio_file,

                              output_pitch_file,

                              output_harmonicity_file=None,

                              output_periodicity_file=None,

                              hop_length=None,

                              fmin=50.,

                              fmax=MAX_FMAX,

                              model='full',

                              decoder=crepe.decode.viterbi,

                              batch_size=None,

                              device='cpu',

                              pad=True):
    """Performs pitch estimation from file on disk



    Arguments

        audio_file (string)

            The file to perform pitch tracking on

        output_pitch_file (string)

            The file to save predicted pitch

        output_harmonicity_file (string or None) [DEPRECATED]

            The file to save predicted harmonicity

        output_periodicity_file (string or None)

            The file to save predicted periodicity

        hop_length (int)

            The hop_length in samples

        fmin (float)

            The minimum allowable frequency in Hz

        fmax (float)

            The maximum allowable frequency in Hz

        model (string)

            The model capacity. One of 'full' or 'tiny'.

        decoder (function)

            The decoder to use. See decode.py for decoders.

        batch_size (int)

            The number of frames per batch

        device (string)

            The device used to run inference

        pad (bool)

            Whether to zero-pad the audio

    """
    # Deprecate output_harmonicity_file
    if output_harmonicity_file is not None:
        message = (
            'The crepe output_harmonicity_file argument is deprecated and '
            'will be removed in a future release. Please use '
            'output_periodicity_file. Rationale: if network confidence measured '
            'harmonic content, the value would be low for non-harmonic, periodic '
            'sounds (e.g., sine waves). But this is not observed.')
        warnings.warn(message, DeprecationWarning)
        output_periodicity_file = output_harmonicity_file

    # Predict from file
    prediction = predict_from_file(audio_file,
                                   hop_length,
                                   fmin,
                                   fmax,
                                   model,
                                   decoder,
                                   False,
                                   output_periodicity_file is not None,
                                   batch_size,
                                   device,
                                   pad)

    # Save to disk
    if output_periodicity_file is not None:
        torch.save(prediction[0].detach(), output_pitch_file)
        torch.save(prediction[1].detach(), output_periodicity_file)
    else:
        torch.save(prediction.detach(), output_pitch_file)


def predict_from_files_to_files(audio_files,

                                output_pitch_files,

                                output_harmonicity_files=None,

                                output_periodicity_files=None,

                                hop_length=None,

                                fmin=50.,

                                fmax=MAX_FMAX,

                                model='full',

                                decoder=crepe.decode.viterbi,

                                batch_size=None,

                                device='cpu',

                                pad=True):
    """Performs pitch estimation from files on disk without reloading model



    Arguments

        audio_files (list[string])

            The files to perform pitch tracking on

        output_pitch_files (list[string])

            The files to save predicted pitch

        output_harmonicity_files (list[string] or None) [DEPRECATED]

            The files to save predicted harmonicity

        output_periodicity_files (list[string] or None)

            The files to save predicted periodicity

        hop_length (int)

            The hop_length in samples

        fmin (float)

            The minimum allowable frequency in Hz

        fmax (float)

            The maximum allowable frequency in Hz

        model (string)

            The model capacity. One of 'full' or 'tiny'.

        decoder (function)

            The decoder to use. See decode.py for decoders.

        batch_size (int)

            The number of frames per batch

        device (string)

            The device used to run inference

        pad (bool)

            Whether to zero-pad the audio

    """
    # Deprecate output_harmonicity_files
    if output_harmonicity_files is not None:
        message = (
            'The crepe output_harmonicity_files argument is deprecated and '
            'will be removed in a future release. Please use '
            'output_periodicity_files. Rationale: if network confidence measured '
            'harmonic content, the value would be low for non-harmonic, periodic '
            'sounds (e.g., sine waves). But this is not observed.')
        warnings.warn(message, DeprecationWarning)
        output_periodicity_files = output_harmonicity_files

    if output_periodicity_files is None:
        output_periodicity_files = len(audio_files) * [None]

    # Setup iterator
    iterator = zip(audio_files, output_pitch_files, output_periodicity_files)
    iterator = tqdm.tqdm(iterator, desc='crepe', dynamic_ncols=True)
    for audio_file, output_pitch_file, output_periodicity_file in iterator:

        # Predict a file
        predict_from_file_to_file(audio_file,
                                  output_pitch_file,
                                  None,
                                  output_periodicity_file,
                                  hop_length,
                                  fmin,
                                  fmax,
                                  model,
                                  decoder,
                                  batch_size,
                                  device,
                                  pad)

###############################################################################
# Crepe pitch embedding
###############################################################################


def embed(audio,

          sample_rate,

          hop_length=None,

          model='full',

          batch_size=None,

          device='cpu',

          pad=True):
    """Embeds audio to the output of CREPE's fifth maxpool layer



    Arguments

        audio (torch.tensor [shape=(1, time)])

            The audio signals

        sample_rate (int)

            The sampling rate in Hz

        hop_length (int)

            The hop_length in samples

        model (string)

            The model capacity. One of 'full' or 'tiny'.

        batch_size (int)

            The number of frames per batch

        device (string)

            The device to run inference on

        pad (bool)

            Whether to zero-pad the audio



    Returns

        embedding (torch.tensor [shape=(1,

                                        1 + int(time // hop_length), 32, -1)])

    """
    results = []

    # Preprocess audio
    generator = preprocess(audio,
                           sample_rate,
                           hop_length,
                           batch_size,
                           device,
                           pad)
    for frames in generator:

        # Infer pitch embeddings
        embedding = infer(frames, model, embed=True)

        # shape=(batch, time / hop_length, 32, embedding_size)
        result = embedding.reshape(audio.size(0), frames.size(0), 32, -1)

        # Place on same device as audio. This allows for large inputs.
        results.append(result.to(audio.device))

    # Concatenate
    return torch.cat(results, 1)


def embed_from_file(audio_file,

                    hop_length=None,

                    model='full',

                    batch_size=None,

                    device='cpu',

                    pad=True):
    """Embeds audio from disk to the output of CREPE's fifth maxpool layer



    Arguments

        audio_file (string)

            The wav file containing the audio to embed

        hop_length (int)

            The hop_length in samples

        model (string)

            The model capacity. One of 'full' or 'tiny'.

        batch_size (int)

            The number of frames per batch

        device (string)

            The device to run inference on

        pad (bool)

            Whether to zero-pad the audio



    Returns

        embedding (torch.tensor [shape=(1,

                                        1 + int(time // hop_length), 32, -1)])

    """
    # Load audio
    audio, sample_rate = crepe.load.audio(audio_file)

    # Embed
    return embed(audio,
                 sample_rate,
                 hop_length,
                 model,
                 batch_size,
                 device,
                 pad)


def embed_from_file_to_file(audio_file,

                            output_file,

                            hop_length=None,

                            model='full',

                            batch_size=None,

                            device='cpu',

                            pad=True):
    """Embeds audio from disk and saves to disk



    Arguments

        audio_file (string)

            The wav file containing the audio to embed

        hop_length (int)

            The hop_length in samples

        output_file (string)

            The file to save the embedding

        model (string)

            The model capacity. One of 'full' or 'tiny'.

        batch_size (int)

            The number of frames per batch

        device (string)

            The device to run inference on

        pad (bool)

            Whether to zero-pad the audio

    """
    # No use computing gradients if we're just saving to file
    with torch.no_grad():

        # Embed
        embedding = embed_from_file(audio_file,
                                    hop_length,
                                    model,
                                    batch_size,
                                    device,
                                    pad)

        # Save to disk
        torch.save(embedding.detach(), output_file)


def embed_from_files_to_files(audio_files,

                              output_files,

                              hop_length=None,

                              model='full',

                              batch_size=None,

                              device='cpu',

                              pad=True):
    """Embeds audio from disk and saves to disk without reloading model



    Arguments

        audio_files (list[string])

            The wav files containing the audio to embed

        output_files (list[string])

            The files to save the embeddings

        hop_length (int)

            The hop_length in samples

        model (string)

            The model capacity. One of 'full' or 'tiny'.

        batch_size (int)

            The number of frames per batch

        device (string)

            The device to run inference on

        pad (bool)

            Whether to zero-pad the audio

    """
    # Setup iterator
    iterator = zip(audio_files, output_files)
    iterator = tqdm.tqdm(iterator, desc='crepe', dynamic_ncols=True)
    for audio_file, output_file in iterator:

        # Embed a file
        embed_from_file_to_file(audio_file,
                                output_file,
                                hop_length,
                                model,
                                batch_size,
                                device,
                                pad)


###############################################################################
# Components for step-by-step prediction
###############################################################################


def infer(frames, model='full', embed=False):
    """Forward pass through the model



    Arguments

        frames (torch.tensor [shape=(time / hop_length, 1024)])

            The network input

        model (string)

            The model capacity. One of 'full' or 'tiny'.

        embed (bool)

            Whether to stop inference at the intermediate embedding layer



    Returns

        logits (torch.tensor [shape=(1 + int(time // hop_length), 360)]) OR

        embedding (torch.tensor [shape=(1 + int(time // hop_length),

                                       embedding_size)])

    """
    # Load the model if necessary
    if not hasattr(infer, 'model') or not hasattr(infer, 'capacity') or \
       (hasattr(infer, 'capacity') and infer.capacity != model):
        crepe.load.model(frames.device, model)

    # Move model to correct device (no-op if devices are the same)
    infer.model = infer.model.to(frames.device)

    # Apply model
    return infer.model(frames, embed=embed)


def postprocess(probabilities,

                fmin=0.,

                fmax=MAX_FMAX,

                decoder=crepe.decode.viterbi,

                return_harmonicity=False,

                return_periodicity=False):
    """Convert model output to F0 and periodicity



    Arguments

        probabilities (torch.tensor [shape=(1, 360, time / hop_length)])

            The probabilities for each pitch bin inferred by the network

        fmin (float)

            The minimum allowable frequency in Hz

        fmax (float)

            The maximum allowable frequency in Hz

        viterbi (bool)

            Whether to use viterbi decoding

        return_harmonicity (bool) [DEPRECATED]

            Whether to also return the network confidence

        return_periodicity (bool)

            Whether to also return the network confidence



    Returns

        pitch (torch.tensor [shape=(1, 1 + int(time // hop_length))])

        periodicity (torch.tensor [shape=(1, 1 + int(time // hop_length))])

    """
    # Sampling is non-differentiable, so remove from graph
    probabilities = probabilities.detach()

    # Convert frequency range to pitch bin range
    minidx = crepe.convert.frequency_to_bins(torch.tensor(fmin))
    maxidx = crepe.convert.frequency_to_bins(torch.tensor(fmax),
                                                  torch.ceil)

    # Remove frequencies outside of allowable range
    probabilities[:, :minidx] = -float('inf')
    probabilities[:, maxidx:] = -float('inf')

    # Perform argmax or viterbi sampling
    bins, pitch = decoder(probabilities)

    # Deprecate return_harmonicity
    if return_harmonicity:
        message = (
            'The crepe return_harmonicity argument is deprecated and '
            'will be removed in a future release. Please use '
            'return_periodicity. Rationale: if network confidence measured '
            'harmonics, the value would be low for non-harmonic, periodic '
            'sounds (e.g., sine waves). But this is not observed.')
        warnings.warn(message, DeprecationWarning)
        return_periodicity = return_harmonicity

    if not return_periodicity:
        return pitch

    # Compute periodicity from probabilities and decoded pitch bins
    return pitch, periodicity(probabilities, bins)


def preprocess(audio,

               sample_rate,

               hop_length=None,

               batch_size=None,

               device='cpu',

               pad=True):
    """Convert audio to model input



    Arguments

        audio (torch.tensor [shape=(1, time)])

            The audio signals

        sample_rate (int)

            The sampling rate in Hz

        hop_length (int)

            The hop_length in samples

        batch_size (int)

            The number of frames per batch

        device (string)

            The device to run inference on

        pad (bool)

            Whether to zero-pad the audio



    Returns

        frames (torch.tensor [shape=(1 + int(time // hop_length), 1024)])

    """
    # Default hop length of 10 ms
    hop_length = sample_rate // 100 if hop_length is None else hop_length

    # Resample
    if sample_rate != SAMPLE_RATE:
        audio = resample(audio, sample_rate)
        hop_length = int(hop_length * SAMPLE_RATE / sample_rate)

    # Get total number of frames

    # Maybe pad
    if pad:
        total_frames = 1 + int(audio.size(1) // hop_length)
        audio = torch.nn.functional.pad(
            audio,
            (WINDOW_SIZE // 2, WINDOW_SIZE // 2))
    else:
        total_frames = 1 + int((audio.size(1) - WINDOW_SIZE) // hop_length)

    # Default to running all frames in a single batch
    batch_size = total_frames if batch_size is None else batch_size

    # Generate batches
    for i in range(0, total_frames, batch_size):

        # Batch indices
        start = max(0, i * hop_length)
        end = min(audio.size(1),
                  (i + batch_size - 1) * hop_length + WINDOW_SIZE)

        # Chunk
        frames = torch.nn.functional.unfold(
            audio[:, None, None, start:end],
            kernel_size=(1, WINDOW_SIZE),
            stride=(1, hop_length))

        # shape=(1 + int(time / hop_length, 1024)
        frames = frames.transpose(1, 2).reshape(-1, WINDOW_SIZE)

        # Place on device
        frames = frames.to(device)

        # Mean-center
        frames -= frames.mean(dim=1, keepdim=True)

        # Scale
        # Note: during silent frames, this produces very large values. But
        # this seems to be what the network expects.
        frames /= torch.max(torch.tensor(1e-10, device=frames.device),
                            frames.std(dim=1, keepdim=True))

        yield frames


###############################################################################
# Utilities
###############################################################################


def periodicity(probabilities, bins):
    """Computes the periodicity from the network output and pitch bins"""
    # shape=(batch * time / hop_length, 360)
    probs_stacked = probabilities.transpose(1, 2).reshape(-1, PITCH_BINS)

    # shape=(batch * time / hop_length, 1)
    bins_stacked = bins.reshape(-1, 1).to(torch.int64)

    # Use maximum logit over pitch bins as periodicity
    periodicity = probs_stacked.gather(1, bins_stacked)

    # shape=(batch, time / hop_length)
    return periodicity.reshape(probabilities.size(0), probabilities.size(2))


def resample(audio, sample_rate):
    """Resample audio"""
    # Store device for later placement
    device = audio.device

    # Convert to numpy
    audio = audio.detach().cpu().numpy().squeeze(0)

    # Resample
    # We have to use resampy if we want numbers to match Crepe
    audio = resampy.resample(audio, sample_rate, SAMPLE_RATE)

    # Convert to pytorch
    return torch.tensor(audio, device=device).unsqueeze(0)