Spaces:
Running
Running
File size: 5,996 Bytes
f9d3b3b 7dfb0b7 f9d3b3b 8396dce f9d3b3b 8396dce f9d3b3b 8396dce f9d3b3b 8396dce f9d3b3b 8396dce f9d3b3b 8396dce f9d3b3b 8396dce f9d3b3b 8396dce f9d3b3b 8396dce b9692e2 8396dce b9692e2 f9d3b3b 8396dce f9d3b3b 52c1bfb c19aed5 f9d3b3b c19aed5 f9d3b3b 8396dce f9d3b3b 8396dce f9d3b3b 7dfb0b7 f9d3b3b 8396dce f9d3b3b b9692e2 f9d3b3b 3a1f221 8396dce 3a1f221 8396dce 3a1f221 8396dce 3a1f221 f9d3b3b 7dfb0b7 f9d3b3b 3a1f221 c19aed5 8396dce c19aed5 831bd2c c19aed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from pathlib import Path
import numpy as np
import pandas as pd
import streamlit as st
from mlip_arena.models import REGISTRY as MODELS
valid_models = [
model
for model, metadata in MODELS.items()
if Path(__file__).stem in metadata.get("gpu-tasks", [])
]
DATA_DIR = Path("mlip_arena/tasks/diatomics")
dfs = [
pd.read_json(DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json")
for model in valid_models
]
df = pd.concat(dfs, ignore_index=True)
table = pd.DataFrame()
for model in valid_models:
rows = df[df["method"] == model]
metadata = MODELS.get(model, {})
new_row = {
"Model": model,
"Conservation deviation [eV/Å]": rows["conservation-deviation"].mean(),
"Spearman's coeff. (E: repulsion)": rows[
"spearman-repulsion-energy"
].mean(),
"Spearman's coeff. (F: descending)": rows[
"spearman-descending-force"
].mean(),
"Tortuosity": rows["tortuosity"].mean(),
"Energy jump [eV]": rows["energy-jump"].mean(),
"Force flips": rows["force-flip-times"].mean(),
"Spearman's coeff. (E: attraction)": rows[
"spearman-attraction-energy"
].mean(),
"Spearman's coeff. (F: ascending)": rows[
"spearman-ascending-force"
].mean(),
"PBE energy MAE [eV]": rows["pbe-energy-mae"].mean(),
"PBE force MAE [eV/Å]": rows["pbe-force-mae"].mean(),
}
table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True)
table.set_index("Model", inplace=True)
table.sort_values("Conservation deviation [eV/Å]", ascending=True, inplace=True)
table["Rank"] = np.argsort(table["Conservation deviation [eV/Å]"].to_numpy())
table.sort_values(
"Spearman's coeff. (E: repulsion)", ascending=True, inplace=True
)
table["Rank"] += np.argsort(table["Spearman's coeff. (E: repulsion)"].to_numpy())
table.sort_values(
"Spearman's coeff. (F: descending)", ascending=True, inplace=True
)
table["Rank"] += np.argsort(table["Spearman's coeff. (F: descending)"].to_numpy())
# NOTE: it's not fair to models trained on different level of theory
# table.sort_values("PBE energy MAE [eV]", ascending=True, inplace=True)
# table["Rank"] += np.argsort(table["PBE energy MAE [eV]"].to_numpy())
# table.sort_values("PBE force MAE [eV/Å]", ascending=True, inplace=True)
# table["Rank"] += np.argsort(table["PBE force MAE [eV/Å]"].to_numpy())
table.sort_values("Tortuosity", ascending=True, inplace=True)
table["Rank"] += np.argsort(table["Tortuosity"].to_numpy())
table.sort_values("Energy jump [eV]", ascending=True, inplace=True)
table["Rank"] += np.argsort(table["Energy jump [eV]"].to_numpy())
table.sort_values("Force flips", ascending=True, inplace=True)
table["Rank"] += np.argsort(np.abs(table["Force flips"].to_numpy() - 1))
table["Rank"] += 1
table.sort_values(["Rank", "Conservation deviation [eV/Å]"], ascending=True, inplace=True)
table["Rank aggr."] = table["Rank"]
table["Rank"] = table["Rank aggr."].rank(method='min').astype(int)
table = table.reindex(
columns=[
"Rank",
"Rank aggr.",
"Conservation deviation [eV/Å]",
"PBE energy MAE [eV]",
"PBE force MAE [eV/Å]",
"Spearman's coeff. (E: repulsion)",
"Spearman's coeff. (F: descending)",
"Energy jump [eV]",
"Force flips",
"Tortuosity",
"Spearman's coeff. (E: attraction)",
"Spearman's coeff. (F: ascending)",
]
)
s = (
table.style.background_gradient(
cmap="viridis_r",
subset=["Conservation deviation [eV/Å]"],
gmap=np.log(table["Conservation deviation [eV/Å]"].to_numpy()),
)
.background_gradient(
cmap="Reds",
subset=[
"Spearman's coeff. (E: repulsion)",
"Spearman's coeff. (F: descending)",
],
# vmin=-1, vmax=-0.5
)
# .background_gradient(
# cmap="Greys",
# subset=[
# "PBE energy MAE [eV]",
# "PBE force MAE [eV/Å]",
# ],
# )
.background_gradient(
cmap="RdPu",
subset=["Tortuosity", "Energy jump [eV]", "Force flips"],
)
.background_gradient(
cmap="Blues",
subset=["Rank", "Rank aggr."],
)
.format(
"{:.3f}",
subset=[
"Conservation deviation [eV/Å]",
"Spearman's coeff. (E: repulsion)",
"Spearman's coeff. (F: descending)",
"Tortuosity",
"Energy jump [eV]",
"Force flips",
"Spearman's coeff. (E: attraction)",
"Spearman's coeff. (F: ascending)",
"PBE energy MAE [eV]",
"PBE force MAE [eV/Å]",
]
)
)
def render():
st.dataframe(
s,
use_container_width=True,
)
with st.expander("Explanation", icon=":material/info:"):
st.caption(
"""
- **Conservation deviation**: The average deviation of force from negative energy gradient along the diatomic curves.
$$
\\text{Conservation deviation} = \\left\\langle\\left| \\mathbf{F}(\\mathbf{r})\\cdot\\frac{\\mathbf{r}}{\\|\\mathbf{r}\\|} + \\nabla_rE\\right|\\right\\rangle_{r = \\|\\mathbf{r}\\|}
$$
- **Spearman's coeff. (E: repulsion)**: Spearman's correlation coefficient of energy prediction within equilibrium distance $r \\in (r_{min}, r_o = \\argmin_{r} E(r))$.
- **Spearman's coeff. (F: descending)**: Spearman's correlation coefficient of force prediction within equilibrium distance $r \\in (r_{min}, r_o = \\argmin_{r} E(r))$.
- **Tortuosity**: The ratio between total variation in energy and sum of absolute energy differences between $r_{min}$, $r_o$, and $r_{max}$.
- **Energy jump**: The sum of energy discontinuity.
- **Force flips**: The number of force direction changes.
"""
)
|