File size: 5,996 Bytes
f9d3b3b
 
 
 
7dfb0b7
f9d3b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8396dce
f9d3b3b
 
8396dce
f9d3b3b
 
 
 
 
8396dce
f9d3b3b
 
8396dce
f9d3b3b
 
8396dce
 
f9d3b3b
 
 
 
 
 
 
 
 
 
8396dce
f9d3b3b
8396dce
f9d3b3b
 
8396dce
f9d3b3b
8396dce
 
b9692e2
 
 
8396dce
b9692e2
 
f9d3b3b
 
 
 
 
 
 
 
8396dce
f9d3b3b
52c1bfb
 
c19aed5
f9d3b3b
 
c19aed5
f9d3b3b
 
 
 
 
 
8396dce
 
 
 
f9d3b3b
 
8396dce
 
 
f9d3b3b
 
7dfb0b7
f9d3b3b
 
 
 
 
 
 
 
 
8396dce
 
f9d3b3b
 
 
b9692e2
 
 
 
 
 
 
f9d3b3b
 
 
 
 
 
 
 
3a1f221
8396dce
3a1f221
 
8396dce
 
3a1f221
 
 
8396dce
 
 
 
3a1f221
 
f9d3b3b
7dfb0b7
 
f9d3b3b
 
 
 
 
3a1f221
c19aed5
 
 
 
 
 
 
 
8396dce
 
c19aed5
 
831bd2c
c19aed5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from pathlib import Path

import numpy as np
import pandas as pd
import streamlit as st

from mlip_arena.models import REGISTRY as MODELS

valid_models = [
    model
    for model, metadata in MODELS.items()
    if Path(__file__).stem in metadata.get("gpu-tasks", [])
]

DATA_DIR = Path("mlip_arena/tasks/diatomics")

dfs = [
    pd.read_json(DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json")
    for model in valid_models
]
df = pd.concat(dfs, ignore_index=True)

table = pd.DataFrame()

for model in valid_models:
    rows = df[df["method"] == model]
    metadata = MODELS.get(model, {})

    new_row = {
        "Model": model,
        "Conservation deviation [eV/Å]": rows["conservation-deviation"].mean(),
        "Spearman's coeff. (E: repulsion)": rows[
            "spearman-repulsion-energy"
        ].mean(),
        "Spearman's coeff. (F: descending)": rows[
            "spearman-descending-force"
        ].mean(),
        "Tortuosity": rows["tortuosity"].mean(),
        "Energy jump [eV]": rows["energy-jump"].mean(),
        "Force flips": rows["force-flip-times"].mean(),
        "Spearman's coeff. (E: attraction)": rows[
            "spearman-attraction-energy"
        ].mean(),
        "Spearman's coeff. (F: ascending)": rows[
            "spearman-ascending-force"
        ].mean(),
        "PBE energy MAE [eV]": rows["pbe-energy-mae"].mean(),
        "PBE force MAE [eV/Å]": rows["pbe-force-mae"].mean(),
    }

    table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True)

table.set_index("Model", inplace=True)

table.sort_values("Conservation deviation [eV/Å]", ascending=True, inplace=True)
table["Rank"] = np.argsort(table["Conservation deviation [eV/Å]"].to_numpy())

table.sort_values(
    "Spearman's coeff. (E: repulsion)", ascending=True, inplace=True
)
table["Rank"] += np.argsort(table["Spearman's coeff. (E: repulsion)"].to_numpy())

table.sort_values(
    "Spearman's coeff. (F: descending)", ascending=True, inplace=True
)
table["Rank"] += np.argsort(table["Spearman's coeff. (F: descending)"].to_numpy())

# NOTE: it's not fair to models trained on different level of theory
# table.sort_values("PBE energy MAE [eV]", ascending=True, inplace=True)
# table["Rank"] += np.argsort(table["PBE energy MAE [eV]"].to_numpy())

# table.sort_values("PBE force MAE [eV/Å]", ascending=True, inplace=True)
# table["Rank"] += np.argsort(table["PBE force MAE [eV/Å]"].to_numpy())

table.sort_values("Tortuosity", ascending=True, inplace=True)
table["Rank"] += np.argsort(table["Tortuosity"].to_numpy())

table.sort_values("Energy jump [eV]", ascending=True, inplace=True)
table["Rank"] += np.argsort(table["Energy jump [eV]"].to_numpy())

table.sort_values("Force flips", ascending=True, inplace=True)
table["Rank"] += np.argsort(np.abs(table["Force flips"].to_numpy() - 1))

table["Rank"] += 1

table.sort_values(["Rank", "Conservation deviation [eV/Å]"], ascending=True, inplace=True)

table["Rank aggr."] = table["Rank"]
table["Rank"] = table["Rank aggr."].rank(method='min').astype(int)

table = table.reindex(
    columns=[
        "Rank",
        "Rank aggr.",
        "Conservation deviation [eV/Å]",
        "PBE energy MAE [eV]",
        "PBE force MAE [eV/Å]",
        "Spearman's coeff. (E: repulsion)",
        "Spearman's coeff. (F: descending)",
        "Energy jump [eV]",
        "Force flips",
        "Tortuosity",
        "Spearman's coeff. (E: attraction)",
        "Spearman's coeff. (F: ascending)",
    ]
)

s = (
    table.style.background_gradient(
        cmap="viridis_r",
        subset=["Conservation deviation [eV/Å]"],
        gmap=np.log(table["Conservation deviation [eV/Å]"].to_numpy()),
    )
    .background_gradient(
        cmap="Reds",
        subset=[
            "Spearman's coeff. (E: repulsion)",
            "Spearman's coeff. (F: descending)",
        ],
        # vmin=-1, vmax=-0.5
    )
    # .background_gradient(
    #     cmap="Greys",
    #     subset=[
    #         "PBE energy MAE [eV]",
    #         "PBE force MAE [eV/Å]",
    #     ],
    # )
    .background_gradient(
        cmap="RdPu",
        subset=["Tortuosity", "Energy jump [eV]", "Force flips"],
    )
    .background_gradient(
        cmap="Blues",
        subset=["Rank", "Rank aggr."],
    )
    .format(
        "{:.3f}", 
        subset=[
            "Conservation deviation [eV/Å]",
            "Spearman's coeff. (E: repulsion)",
            "Spearman's coeff. (F: descending)",
            "Tortuosity",
            "Energy jump [eV]",
            "Force flips",
            "Spearman's coeff. (E: attraction)",
            "Spearman's coeff. (F: ascending)",
            "PBE energy MAE [eV]",
            "PBE force MAE [eV/Å]",
        ]
    )
)


def render():
    st.dataframe(
        s,
        use_container_width=True,
    )
    with st.expander("Explanation", icon=":material/info:"):
        st.caption(
            """
            - **Conservation deviation**: The average deviation of force from negative energy gradient along the diatomic curves. 
            
            $$
            \\text{Conservation deviation} = \\left\\langle\\left| \\mathbf{F}(\\mathbf{r})\\cdot\\frac{\\mathbf{r}}{\\|\\mathbf{r}\\|} +  \\nabla_rE\\right|\\right\\rangle_{r = \\|\\mathbf{r}\\|}
            $$

            - **Spearman's coeff. (E: repulsion)**: Spearman's correlation coefficient of energy prediction within equilibrium distance $r \\in (r_{min}, r_o = \\argmin_{r} E(r))$.
            - **Spearman's coeff. (F: descending)**: Spearman's correlation coefficient of force prediction within equilibrium distance $r \\in (r_{min}, r_o = \\argmin_{r} E(r))$.
            - **Tortuosity**: The ratio between total variation in energy and sum of absolute energy differences between $r_{min}$, $r_o$, and $r_{max}$.
            - **Energy jump**: The sum of energy discontinuity.
            - **Force flips**: The number of force direction changes.
            """
        )