File size: 5,285 Bytes
89faec9
 
 
 
623f47a
89faec9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a133fcb
 
3246b20
89faec9
 
3246b20
89faec9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
623f47a
89faec9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a577d27
 
 
 
 
 
 
 
 
 
 
 
 
89faec9
623f47a
 
89faec9
 
 
 
 
a577d27
3246b20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from pathlib import Path

import numpy as np
import pandas as pd
import streamlit as st

from mlip_arena.models import REGISTRY as MODELS

valid_models = [
    model
    for model, metadata in MODELS.items()
    if Path(__file__).stem in metadata.get("gpu-tasks", [])
]

DATA_DIR = Path("mlip_arena/tasks/diatomics")

dfs = [
    pd.read_json(DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json")
    for model in valid_models
]
df = pd.concat(dfs, ignore_index=True)

table = pd.DataFrame()

for model in valid_models:
    rows = df[df["method"] == model]
    metadata = MODELS.get(model, {})

    new_row = {
        "Model": model,
        "Conservation deviation [eV/Å]": rows["conservation-deviation"].mean(),
        "Spearman's coeff. (Energy - repulsion)": rows[
            "spearman-repulsion-energy"
        ].mean(),
        "Spearman's coeff. (Force - descending)": rows[
            "spearman-descending-force"
        ].mean(),
        "Tortuosity": rows["tortuosity"].mean(),
        "Energy jump [eV]": rows["energy-jump"].mean(),
        "Force flips": rows["force-flip-times"].mean(),
        "Spearman's coeff. (Energy - attraction)": rows[
            "spearman-attraction-energy"
        ].mean(),
        "Spearman's coeff. (Force - ascending)": rows[
            "spearman-ascending-force"
        ].mean(),
    }

    table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True)

table.set_index("Model", inplace=True)

table.sort_values("Conservation deviation [eV/Å]", ascending=True, inplace=True)
table["Rank"] = np.argsort(table["Conservation deviation [eV/Å]"].to_numpy())

table.sort_values(
    "Spearman's coeff. (Energy - repulsion)", ascending=True, inplace=True
)
table["Rank"] += np.argsort(table["Spearman's coeff. (Energy - repulsion)"].to_numpy())

table.sort_values(
    "Spearman's coeff. (Force - descending)", ascending=True, inplace=True
)
table["Rank"] += np.argsort(table["Spearman's coeff. (Force - descending)"].to_numpy())

table.sort_values("Tortuosity", ascending=True, inplace=True)
table["Rank"] += np.argsort(table["Tortuosity"].to_numpy())

table.sort_values("Energy jump [eV]", ascending=True, inplace=True)
table["Rank"] += np.argsort(table["Energy jump [eV]"].to_numpy())

table.sort_values("Force flips", ascending=True, inplace=True)
table["Rank"] += np.argsort(table["Force flips"].to_numpy())

table["Rank"] += 1

table.sort_values(["Rank", "Conservation deviation [eV/Å]"], ascending=True, inplace=True)

table["Rank aggr."] = table["Rank"]
table["Rank"] = table["Rank aggr."].rank(method='min').astype(int)

table = table.reindex(
    columns=[
        "Rank",
        "Rank aggr.",
        "Conservation deviation [eV/Å]",
        "Spearman's coeff. (Energy - repulsion)",
        "Spearman's coeff. (Force - descending)",
        "Tortuosity",
        "Energy jump [eV]",
        "Force flips",
        "Spearman's coeff. (Energy - attraction)",
        "Spearman's coeff. (Force - ascending)",
    ]
)

s = (
    table.style.background_gradient(
        cmap="viridis_r",
        subset=["Conservation deviation [eV/Å]"],
        gmap=np.log(table["Conservation deviation [eV/Å]"].to_numpy()),
    )
    .background_gradient(
        cmap="Reds",
        subset=[
            "Spearman's coeff. (Energy - repulsion)",
            "Spearman's coeff. (Force - descending)",
        ],
        # vmin=-1, vmax=-0.5
    )
    .background_gradient(
        cmap="RdPu",
        subset=["Tortuosity", "Energy jump [eV]", "Force flips"],
    )
    .background_gradient(
        cmap="Blues",
        subset=["Rank", "Rank aggr."],
    )
    .format(
        "{:.4f}", 
        subset=[
            "Conservation deviation [eV/Å]",
            "Spearman's coeff. (Energy - repulsion)",
            "Spearman's coeff. (Force - descending)",
            "Tortuosity",
            "Energy jump [eV]",
            "Force flips",
            "Spearman's coeff. (Energy - attraction)",
            "Spearman's coeff. (Force - ascending)",
        ]
    )
)


def render():
    st.dataframe(
        s,
        use_container_width=True,
    )
    with st.expander("Explanation", icon=":material/info:"):
        st.caption(
            """
            - **Conservation deviation**: The average deviation of force from negative energy gradient along the diatomic curves. 
            
            $$
            \\text{Conservation deviation} = \\left\\langle\\left| \\mathbf{F}(\\mathbf{r})\\cdot\\frac{\\mathbf{r}}{\\|\\mathbf{r}\\|} +  \\nabla_rE\\right|\\right\\rangle_{r = \\|\\mathbf{r}\\|}
            $$

            - **Spearman's coeff. (Energy - repulsion)**: Spearman's correlation coefficient of energy prediction within equilibrium distance $r \\in (r_{min}, r_o = \\argmin_{r} E(r))$.
            - **Spearman's coeff. (Force - descending)**: Spearman's correlation coefficient of force prediction within equilibrium distance $r \\in (r_{min}, r_o = \\argmin_{r} E(r))$.
            - **Tortuosity**: The ratio between total variation in energy and sum of absolute energy differences between $r_{min}$, $r_o$, and $r_{max}$.
            - **Energy jump**: The sum of energy discontinuity.
            - **Force flips**: The number of sign changes.
            """
        )