Spaces:
Running
Running
File size: 4,320 Bytes
2100e49 623f47a 2100e49 623f47a 2100e49 623f47a 2100e49 34fa973 2100e49 ffd09d9 623f47a 2100e49 34fa973 2100e49 623f47a 2100e49 34fa973 2100e49 34fa973 2100e49 ffd09d9 623f47a 2100e49 34fa973 623f47a 34fa973 aacb559 34fa973 aacb559 34fa973 aacb559 623f47a 34fa973 aacb559 34fa973 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
from pathlib import Path
import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st
from mlip_arena.models import REGISTRY
DATA_DIR = Path("mlip_arena/tasks/combustion")
st.markdown("""
# Combustion
""")
st.markdown("### Methods")
container = st.container(border=True)
valid_models = [model for model, metadata in REGISTRY.items() if Path(__file__).stem in metadata.get("gpu-tasks", [])]
models = container.multiselect(
"MLIPs",
valid_models,
["MACE-MP(M)", "CHGNet", "M3GNet", "SevenNet", "ORB", "EquiformerV2(OC22)", "eSCN(OC20)"]
)
st.markdown("### Settings")
vis = st.container(border=True)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
attr: getattr(pcolors.qualitative, attr)
for attr in all_attributes
if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)
palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())
palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
color_sequence = color_palettes[palette_name]
if not models:
st.stop()
families = [REGISTRY[str(model)]["family"] for model in models]
dfs = [
pd.read_json(DATA_DIR / family.lower() / "hydrogen.json")
for family in families
]
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["formula", "method"])
method_color_mapping = {
method: color_sequence[i % len(color_sequence)]
for i, method in enumerate(df["method"].unique())
}
###
# Number of products
fig = go.Figure()
for method in df["method"].unique():
row = df[df["method"] == method].iloc[0]
fig.add_trace(
go.Scatter(
x=row["timestep"],
y=row["nproducts"],
mode="lines",
name=method,
line=dict(color=method_color_mapping[method]),
showlegend=True,
),
)
fig.update_layout(
title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
xaxis_title="Timestep",
yaxis_title="Number of water molecules",
)
st.plotly_chart(fig)
# tempearture
fig = go.Figure()
for method in df["method"].unique():
row = df[df["method"] == method].iloc[0]
fig.add_trace(
go.Scatter(
x=row["timestep"],
y=row["temperatures"],
mode="markers",
name=method,
line=dict(color=method_color_mapping[method]),
showlegend=True,
),
)
target_steps = df["target_steps"].iloc[0]
fig.add_trace(
go.Line(
x=[0, target_steps/3, target_steps/3*2, target_steps],
y=[300, 3000, 3000, 300],
mode="lines",
name="Target",
line=dict(
dash="dash",
),
showlegend=True,
),
)
fig.update_layout(
title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
xaxis_title="Timestep",
yaxis_title="Temperatures",
yaxis2=dict(
title="Product Percentage (%)",
overlaying="y",
side="right",
range=[0, 100],
tickmode="sync"
)
# template="plotly_dark",
)
st.plotly_chart(fig)
# Final reaction rate
fig = go.Figure()
# df["yield"] = np.array(df["nproducts"]) / 128 * 100
df = df.sort_values("yield", ascending=True)
fig.add_trace(
go.Bar(
x=df["yield"] * 100,
y=df["method"],
opacity=0.75,
orientation="h",
marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
text=[f"{y:.2f} %" for y in df["yield"] * 100],
)
)
fig.update_layout(
title="Reaction yield (2H2 + O2 -> 2H2O, 64 units)",
xaxis_title="Yield (%)",
yaxis_title="Method",
)
st.plotly_chart(fig)
# MD runtime speed
fig = go.Figure()
df = df.sort_values("steps_per_second", ascending=True)
fig.add_trace(
go.Bar(
x=df["steps_per_second"],
y=df["method"],
opacity=0.75,
orientation="h",
marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
text=df["steps_per_second"].round(1)
)
)
fig.update_layout(
title="MD runtime speed (on single A100 GPU)",
xaxis_title="Steps per second",
yaxis_title="Method",
)
st.plotly_chart(fig)
|