File size: 3,763 Bytes
b881f30
 
 
d9ed521
 
 
b881f30
 
d9ed521
b881f30
 
d9ed521
b881f30
 
 
d9ed521
b881f30
d9ed521
 
 
89bc52a
b881f30
d9ed521
b881f30
d9ed521
 
b881f30
d9ed521
 
b881f30
 
 
d9ed521
b881f30
d9ed521
b881f30
d9ed521
 
b881f30
 
d9ed521
b881f30
d9ed521
 
b881f30
d9ed521
 
89bc52a
d9ed521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89bc52a
d9ed521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89bc52a
 
d9ed521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b881f30
 
d9ed521
 
b881f30
d9ed521
 
89bc52a
 
 
 
 
 
 
 
 
 
b881f30
d9ed521
89bc52a
 
 
 
 
 
 
 
 
 
 
 
b881f30
d9ed521
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from pathlib import Path

import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st
from ase.data import chemical_symbols
from plotly.subplots import make_subplots
from scipy.interpolate import CubicSpline

color_sequence = pcolors.qualitative.Plotly



st.markdown("# Homonuclear diatomics")

# button to toggle plots
container = st.container(border=True)
energy_plot = container.checkbox("Show energy curves", value=True)
force_plot = container.checkbox("Show force curves", value=True)

ncols = 2

DATA_DIR = Path("mlip_arena/tasks/diatomics")
mlips = ["MACE-MP", "CHGNet"]

dfs = [pd.read_json(DATA_DIR / mlip.lower() /  "homonuclear-diatomics.json") for mlip in mlips]
df = pd.concat(dfs, ignore_index=True)



df.drop_duplicates(inplace=True, subset=["name", "method"])

for i, symbol in enumerate(chemical_symbols[1:]):

    if i % ncols == 0:
        cols = st.columns(ncols)


    rows = df[df["name"] == symbol + symbol]

    if rows.empty:
        continue

    fig = make_subplots(specs=[[{"secondary_y": True}]])

    elo, flo = float("inf"), float("inf")

    for j, method in enumerate(rows["method"].unique()):
        row = rows[rows["method"] == method].iloc[0]

        rs = np.array(row["R"])
        es = np.array(row["E"])
        fs = np.array(row["F"])

        rs = np.array(rs)
        ind = np.argsort(rs)
        es = np.array(es)
        fs = np.array(fs)

        rs = rs[ind]
        es = es[ind]
        es = es - es[-1]
        fs = fs[ind]

        xs = np.linspace(rs.min()*0.99, rs.max()*1.01, int(5e2))

        if energy_plot:
            cs = CubicSpline(rs, es)
            ys = cs(xs)

            elo = min(elo, ys.min()*1.2, -1)

            fig.add_trace(
                go.Scatter(
                    x=xs, y=ys,
                    mode="lines",
                    line=dict(
                        color=color_sequence[j % len(color_sequence)],
                        width=2,
                    ),
                    name=method,
                ),
                secondary_y=False,
            )

        if force_plot:
            cs = CubicSpline(rs, fs)
            ys = cs(xs)

            flo = min(flo, ys.min()*1.2)

            fig.add_trace(
                go.Scatter(
                    x=xs, y=ys,
                    mode="lines",
                    line=dict(
                        color=color_sequence[j % len(color_sequence)],
                        width=1,
                        dash="dot",
                    ),
                    name=method,
                    showlegend=False if energy_plot else True,
                ),
                secondary_y=True,
            )


    fig.update_layout(
        showlegend=True,
        title_text=f"{symbol}-{symbol}",
        title_x=0.5,
        # yaxis_range=[ylo, 2*(abs(ylo))],
    )

    # Set x-axis title
    fig.update_xaxes(title_text="Bond length (Å)")

    # Set y-axes titles
    if energy_plot:

        fig.update_layout(
            yaxis=dict(
                title=dict(text="Energy [eV]"),
                side="left",
                range=[elo, 2*(abs(elo))],
            )
        )

        # fig.update_yaxes(title_text="Energy [eV]", secondary_y=False)

    if force_plot:

        fig.update_layout(
            yaxis2=dict(
                title=dict(text="Force [eV/Å]"),
                side="right",
                range=[flo, 2*(abs(flo))],
                overlaying="y",
                tickmode="sync",
            ),
        )

        # fig.update_yaxes(title_text="Force [eV/Å]", secondary_y=True)

    # cols[i % ncols].title(f"{row['name']}")
    cols[i % ncols].plotly_chart(fig, use_container_width=True, height=250)