Spaces:
Sleeping
Sleeping
atifsial123
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -13,41 +13,55 @@ install("pandas")
|
|
13 |
install("scikit-learn")
|
14 |
install("gradio")
|
15 |
|
16 |
-
|
17 |
-
from transformers import AutoModel, AutoTokenizer
|
18 |
-
import torch
|
19 |
-
from torch.utils.data import DataLoader, Dataset
|
20 |
-
from sklearn.model_selection import train_test_split
|
21 |
import pandas as pd
|
22 |
import gradio as gr
|
23 |
-
import
|
24 |
|
25 |
# Load the pre-trained model and tokenizer
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Function to load the dataset
|
30 |
def load_dataset():
|
31 |
-
# Use the uploaded file path
|
32 |
file_path = "Valid-part-2.xlsx"
|
33 |
if not os.path.exists(file_path):
|
34 |
raise FileNotFoundError(f"Dataset not found. Please ensure that '{file_path}' exists.")
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Function to search by name and return the PEC number
|
41 |
def search_by_name(name, df):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# Gradio interface
|
49 |
def build_interface():
|
50 |
df = load_dataset() # Load your dataset
|
|
|
|
|
|
|
51 |
iface = gr.Interface(
|
52 |
fn=lambda name: search_by_name(name, df),
|
53 |
inputs=gr.Textbox(label="Please write your Name"),
|
@@ -59,9 +73,13 @@ def build_interface():
|
|
59 |
|
60 |
# Main function to run the Gradio app
|
61 |
if __name__ == "__main__":
|
62 |
-
|
|
|
|
|
|
|
63 |
iface = build_interface()
|
64 |
-
iface
|
65 |
-
|
66 |
-
|
|
|
67 |
|
|
|
13 |
install("scikit-learn")
|
14 |
install("gradio")
|
15 |
|
16 |
+
import os
|
|
|
|
|
|
|
|
|
17 |
import pandas as pd
|
18 |
import gradio as gr
|
19 |
+
from transformers import AutoModel, AutoTokenizer
|
20 |
|
21 |
# Load the pre-trained model and tokenizer
|
22 |
+
def load_model_and_tokenizer():
|
23 |
+
try:
|
24 |
+
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
26 |
+
return model, tokenizer
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Error loading model or tokenizer: {e}")
|
29 |
+
return None, None
|
30 |
|
31 |
# Function to load the dataset
|
32 |
def load_dataset():
|
|
|
33 |
file_path = "Valid-part-2.xlsx"
|
34 |
if not os.path.exists(file_path):
|
35 |
raise FileNotFoundError(f"Dataset not found. Please ensure that '{file_path}' exists.")
|
36 |
|
37 |
+
try:
|
38 |
+
df = pd.read_excel(file_path)
|
39 |
+
print("Columns in the dataset:", df.columns.tolist())
|
40 |
+
return df
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error loading dataset: {e}")
|
43 |
+
return None
|
44 |
|
45 |
# Function to search by name and return the PEC number
|
46 |
def search_by_name(name, df):
|
47 |
+
if df is None:
|
48 |
+
return "Error: Dataset not loaded."
|
49 |
+
|
50 |
+
try:
|
51 |
+
name_matches = df[df['name'].str.contains(name, case=False, na=False)]
|
52 |
+
if not name_matches.empty:
|
53 |
+
return f"Your PEC number: {name_matches['PEC number'].values[0]}"
|
54 |
+
else:
|
55 |
+
return "No matches found for your name."
|
56 |
+
except Exception as e:
|
57 |
+
return f"Error during search: {e}"
|
58 |
|
59 |
# Gradio interface
|
60 |
def build_interface():
|
61 |
df = load_dataset() # Load your dataset
|
62 |
+
if df is None:
|
63 |
+
return None
|
64 |
+
|
65 |
iface = gr.Interface(
|
66 |
fn=lambda name: search_by_name(name, df),
|
67 |
inputs=gr.Textbox(label="Please write your Name"),
|
|
|
73 |
|
74 |
# Main function to run the Gradio app
|
75 |
if __name__ == "__main__":
|
76 |
+
model, tokenizer = load_model_and_tokenizer()
|
77 |
+
if model is None or tokenizer is None:
|
78 |
+
print("Failed to load model or tokenizer. Exiting.")
|
79 |
+
else:
|
80 |
iface = build_interface()
|
81 |
+
if iface is not None:
|
82 |
+
iface.launch()
|
83 |
+
else:
|
84 |
+
print("Failed to build interface due to dataset issues.")
|
85 |
|