Delete app..py
Browse files
app..py
DELETED
@@ -1,432 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
from annotator.util import resize_image, HWC3
|
6 |
-
|
7 |
-
DESCRIPTION = '# ControlNet v1.1 Annotators (that runs on cpu only)'
|
8 |
-
DESCRIPTION += '\n<p>This app generates Control Image for Mochi Diffusion's ControlNet.</p>'
|
9 |
-
DESCRIPTION += '\n<p>HEIC image is not converted. Please use PNG or JPG image.</p>'
|
10 |
-
|
11 |
-
|
12 |
-
model_canny = None
|
13 |
-
|
14 |
-
|
15 |
-
def canny(img, res, l, h):
|
16 |
-
img = resize_image(HWC3(img), res)
|
17 |
-
global model_canny
|
18 |
-
if model_canny is None:
|
19 |
-
from annotator.canny import CannyDetector
|
20 |
-
model_canny = CannyDetector()
|
21 |
-
result = model_canny(img, l, h)
|
22 |
-
return [result]
|
23 |
-
|
24 |
-
|
25 |
-
model_hed = None
|
26 |
-
|
27 |
-
|
28 |
-
def hed(img, res):
|
29 |
-
img = resize_image(HWC3(img), res)
|
30 |
-
global model_hed
|
31 |
-
if model_hed is None:
|
32 |
-
from annotator.hed import HEDdetector
|
33 |
-
model_hed = HEDdetector()
|
34 |
-
result = model_hed(img)
|
35 |
-
return [result]
|
36 |
-
|
37 |
-
|
38 |
-
model_pidi = None
|
39 |
-
|
40 |
-
|
41 |
-
def pidi(img, res):
|
42 |
-
img = resize_image(HWC3(img), res)
|
43 |
-
global model_pidi
|
44 |
-
if model_pidi is None:
|
45 |
-
from annotator.pidinet import PidiNetDetector
|
46 |
-
model_pidi = PidiNetDetector()
|
47 |
-
result = model_pidi(img)
|
48 |
-
return [result]
|
49 |
-
|
50 |
-
|
51 |
-
model_mlsd = None
|
52 |
-
|
53 |
-
|
54 |
-
def mlsd(img, res, thr_v, thr_d):
|
55 |
-
img = resize_image(HWC3(img), res)
|
56 |
-
global model_mlsd
|
57 |
-
if model_mlsd is None:
|
58 |
-
from annotator.mlsd import MLSDdetector
|
59 |
-
model_mlsd = MLSDdetector()
|
60 |
-
result = model_mlsd(img, thr_v, thr_d)
|
61 |
-
return [result]
|
62 |
-
|
63 |
-
|
64 |
-
model_midas = None
|
65 |
-
|
66 |
-
|
67 |
-
def midas(img, res):
|
68 |
-
img = resize_image(HWC3(img), res)
|
69 |
-
global model_midas
|
70 |
-
if model_midas is None:
|
71 |
-
from annotator.midas import MidasDetector
|
72 |
-
model_midas = MidasDetector()
|
73 |
-
result = model_midas(img)
|
74 |
-
return [result]
|
75 |
-
|
76 |
-
|
77 |
-
model_zoe = None
|
78 |
-
|
79 |
-
|
80 |
-
def zoe(img, res):
|
81 |
-
img = resize_image(HWC3(img), res)
|
82 |
-
global model_zoe
|
83 |
-
if model_zoe is None:
|
84 |
-
from annotator.zoe import ZoeDetector
|
85 |
-
model_zoe = ZoeDetector()
|
86 |
-
result = model_zoe(img)
|
87 |
-
return [result]
|
88 |
-
|
89 |
-
|
90 |
-
model_normalbae = None
|
91 |
-
|
92 |
-
|
93 |
-
def normalbae(img, res):
|
94 |
-
img = resize_image(HWC3(img), res)
|
95 |
-
global model_normalbae
|
96 |
-
if model_normalbae is None:
|
97 |
-
from annotator.normalbae import NormalBaeDetector
|
98 |
-
model_normalbae = NormalBaeDetector()
|
99 |
-
result = model_normalbae(img)
|
100 |
-
return [result]
|
101 |
-
|
102 |
-
|
103 |
-
model_openpose = None
|
104 |
-
|
105 |
-
|
106 |
-
def openpose(img, res, hand_and_face):
|
107 |
-
img = resize_image(HWC3(img), res)
|
108 |
-
global model_openpose
|
109 |
-
if model_openpose is None:
|
110 |
-
from annotator.openpose import OpenposeDetector
|
111 |
-
model_openpose = OpenposeDetector()
|
112 |
-
result = model_openpose(img, hand_and_face)
|
113 |
-
return [result]
|
114 |
-
|
115 |
-
|
116 |
-
model_uniformer = None
|
117 |
-
|
118 |
-
|
119 |
-
#def uniformer(img, res):
|
120 |
-
# img = resize_image(HWC3(img), res)
|
121 |
-
# global model_uniformer
|
122 |
-
# if model_uniformer is None:
|
123 |
-
# from annotator.uniformer import UniformerDetector
|
124 |
-
# model_uniformer = UniformerDetector()
|
125 |
-
# result = model_uniformer(img)
|
126 |
-
# return [result]
|
127 |
-
|
128 |
-
|
129 |
-
model_lineart_anime = None
|
130 |
-
|
131 |
-
|
132 |
-
def lineart_anime(img, res, invert=True):
|
133 |
-
img = resize_image(HWC3(img), res)
|
134 |
-
global model_lineart_anime
|
135 |
-
if model_lineart_anime is None:
|
136 |
-
from annotator.lineart_anime import LineartAnimeDetector
|
137 |
-
model_lineart_anime = LineartAnimeDetector()
|
138 |
-
# result = model_lineart_anime(img)
|
139 |
-
if (invert):
|
140 |
-
result = cv2.bitwise_not(model_lineart_anime(img))
|
141 |
-
else:
|
142 |
-
result = model_lineart_anime(img)
|
143 |
-
return [result]
|
144 |
-
|
145 |
-
|
146 |
-
model_lineart = None
|
147 |
-
|
148 |
-
|
149 |
-
def lineart(img, res, coarse=False, invert=True):
|
150 |
-
img = resize_image(HWC3(img), res)
|
151 |
-
global model_lineart
|
152 |
-
if model_lineart is None:
|
153 |
-
from annotator.lineart import LineartDetector
|
154 |
-
model_lineart = LineartDetector()
|
155 |
-
# result = model_lineart(img, coarse)
|
156 |
-
if (invert):
|
157 |
-
result = cv2.bitwise_not(model_lineart(img, coarse))
|
158 |
-
else:
|
159 |
-
result = model_lineart(img, coarse)
|
160 |
-
return [result]
|
161 |
-
|
162 |
-
|
163 |
-
model_oneformer_coco = None
|
164 |
-
|
165 |
-
|
166 |
-
def oneformer_coco(img, res):
|
167 |
-
img = resize_image(HWC3(img), res)
|
168 |
-
global model_oneformer_coco
|
169 |
-
if model_oneformer_coco is None:
|
170 |
-
from annotator.oneformer import OneformerCOCODetector
|
171 |
-
model_oneformer_coco = OneformerCOCODetector()
|
172 |
-
result = model_oneformer_coco(img)
|
173 |
-
return [result]
|
174 |
-
|
175 |
-
|
176 |
-
model_oneformer_ade20k = None
|
177 |
-
|
178 |
-
|
179 |
-
def oneformer_ade20k(img, res):
|
180 |
-
img = resize_image(HWC3(img), res)
|
181 |
-
global model_oneformer_ade20k
|
182 |
-
if model_oneformer_ade20k is None:
|
183 |
-
from annotator.oneformer import OneformerADE20kDetector
|
184 |
-
model_oneformer_ade20k = OneformerADE20kDetector()
|
185 |
-
result = model_oneformer_ade20k(img)
|
186 |
-
return [result]
|
187 |
-
|
188 |
-
|
189 |
-
model_content_shuffler = None
|
190 |
-
|
191 |
-
|
192 |
-
def content_shuffler(img, res):
|
193 |
-
img = resize_image(HWC3(img), res)
|
194 |
-
global model_content_shuffler
|
195 |
-
if model_content_shuffler is None:
|
196 |
-
from annotator.shuffle import ContentShuffleDetector
|
197 |
-
model_content_shuffler = ContentShuffleDetector()
|
198 |
-
result = model_content_shuffler(img)
|
199 |
-
return [result]
|
200 |
-
|
201 |
-
|
202 |
-
model_color_shuffler = None
|
203 |
-
|
204 |
-
|
205 |
-
def color_shuffler(img, res):
|
206 |
-
img = resize_image(HWC3(img), res)
|
207 |
-
global model_color_shuffler
|
208 |
-
if model_color_shuffler is None:
|
209 |
-
from annotator.shuffle import ColorShuffleDetector
|
210 |
-
model_color_shuffler = ColorShuffleDetector()
|
211 |
-
result = model_color_shuffler(img)
|
212 |
-
return [result]
|
213 |
-
|
214 |
-
model_inpaint = None
|
215 |
-
|
216 |
-
|
217 |
-
def inpaint(image, invert):
|
218 |
-
# image = resize_image(img, res)
|
219 |
-
color = HWC3(image["image"])
|
220 |
-
if(invert):
|
221 |
-
alpha = image["mask"][:, :, 0:1]
|
222 |
-
else:
|
223 |
-
alpha = 255 - image["mask"][:, :, 0:1]
|
224 |
-
result = np.concatenate([color, alpha], axis=2)
|
225 |
-
return [result]
|
226 |
-
|
227 |
-
block = gr.Blocks().queue()
|
228 |
-
with block:
|
229 |
-
gr.Markdown(DESCRIPTION)
|
230 |
-
with gr.Row():
|
231 |
-
gr.Markdown("## Canny Edge")
|
232 |
-
with gr.Row():
|
233 |
-
with gr.Column():
|
234 |
-
input_image = gr.Image(source='upload', type="numpy")
|
235 |
-
low_threshold = gr.Slider(label="low_threshold", minimum=1, maximum=255, value=100, step=1)
|
236 |
-
high_threshold = gr.Slider(label="high_threshold", minimum=1, maximum=255, value=200, step=1)
|
237 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
238 |
-
run_button = gr.Button(label="Run")
|
239 |
-
with gr.Column():
|
240 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
241 |
-
run_button.click(fn=canny, inputs=[input_image, resolution, low_threshold, high_threshold], outputs=[gallery])
|
242 |
-
|
243 |
-
gr.Markdown("<hr>")
|
244 |
-
with gr.Row():
|
245 |
-
gr.Markdown("## Inpaint \n<p>Mochi Diffusionの次バージョンで使えるようになるかもしれないので試作中")
|
246 |
-
with gr.Row():
|
247 |
-
with gr.Column():
|
248 |
-
input_image = gr.Image(source='upload', type="numpy", tool="sketch", height=512)
|
249 |
-
# resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
250 |
-
invert = gr.Checkbox(label='Invert Mask', value=False)
|
251 |
-
run_button = gr.Button(label="Run")
|
252 |
-
with gr.Column():
|
253 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
254 |
-
# run_button.click(fn=inpaint, inputs=[input_image, resolution], outputs=[gallery])
|
255 |
-
run_button.click(fn=inpaint, inputs=[input_image, invert], outputs=[gallery])
|
256 |
-
|
257 |
-
gr.Markdown("<hr>")
|
258 |
-
with gr.Row():
|
259 |
-
gr.Markdown("## HED Edge "SoftEdge"")
|
260 |
-
with gr.Row():
|
261 |
-
with gr.Column():
|
262 |
-
input_image = gr.Image(source='upload', type="numpy")
|
263 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
264 |
-
run_button = gr.Button(label="Run")
|
265 |
-
with gr.Column():
|
266 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
267 |
-
run_button.click(fn=hed, inputs=[input_image, resolution], outputs=[gallery])
|
268 |
-
|
269 |
-
gr.Markdown("<hr>")
|
270 |
-
with gr.Row():
|
271 |
-
gr.Markdown("## Pidi Edge "SoftEdge"")
|
272 |
-
with gr.Row():
|
273 |
-
with gr.Column():
|
274 |
-
input_image = gr.Image(source='upload', type="numpy")
|
275 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
276 |
-
run_button = gr.Button(label="Run")
|
277 |
-
with gr.Column():
|
278 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
279 |
-
run_button.click(fn=pidi, inputs=[input_image, resolution], outputs=[gallery])
|
280 |
-
|
281 |
-
gr.Markdown("<hr>")
|
282 |
-
with gr.Row():
|
283 |
-
gr.Markdown("## MLSD Edge")
|
284 |
-
with gr.Row():
|
285 |
-
with gr.Column():
|
286 |
-
input_image = gr.Image(source='upload', type="numpy")
|
287 |
-
value_threshold = gr.Slider(label="value_threshold", minimum=0.01, maximum=2.0, value=0.1, step=0.01)
|
288 |
-
distance_threshold = gr.Slider(label="distance_threshold", minimum=0.01, maximum=20.0, value=0.1, step=0.01)
|
289 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
|
290 |
-
run_button = gr.Button(label="Run")
|
291 |
-
with gr.Column():
|
292 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
293 |
-
run_button.click(fn=mlsd, inputs=[input_image, resolution, value_threshold, distance_threshold], outputs=[gallery])
|
294 |
-
|
295 |
-
gr.Markdown("<hr>")
|
296 |
-
with gr.Row():
|
297 |
-
gr.Markdown("## MIDAS Depth")
|
298 |
-
with gr.Row():
|
299 |
-
with gr.Column():
|
300 |
-
input_image = gr.Image(source='upload', type="numpy")
|
301 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
|
302 |
-
run_button = gr.Button(label="Run")
|
303 |
-
with gr.Column():
|
304 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
305 |
-
run_button.click(fn=midas, inputs=[input_image, resolution], outputs=[gallery])
|
306 |
-
|
307 |
-
|
308 |
-
gr.Markdown("<hr>")
|
309 |
-
with gr.Row():
|
310 |
-
gr.Markdown("## Zoe Depth")
|
311 |
-
with gr.Row():
|
312 |
-
with gr.Column():
|
313 |
-
input_image = gr.Image(source='upload', type="numpy")
|
314 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
315 |
-
run_button = gr.Button(label="Run")
|
316 |
-
with gr.Column():
|
317 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
318 |
-
run_button.click(fn=zoe, inputs=[input_image, resolution], outputs=[gallery])
|
319 |
-
|
320 |
-
gr.Markdown("<hr>")
|
321 |
-
with gr.Row():
|
322 |
-
gr.Markdown("## Normal Bae")
|
323 |
-
with gr.Row():
|
324 |
-
with gr.Column():
|
325 |
-
input_image = gr.Image(source='upload', type="numpy")
|
326 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
327 |
-
run_button = gr.Button(label="Run")
|
328 |
-
with gr.Column():
|
329 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
330 |
-
run_button.click(fn=normalbae, inputs=[input_image, resolution], outputs=[gallery])
|
331 |
-
|
332 |
-
gr.Markdown("<hr>")
|
333 |
-
with gr.Row():
|
334 |
-
gr.Markdown("## Openpose")
|
335 |
-
with gr.Row():
|
336 |
-
with gr.Column():
|
337 |
-
input_image = gr.Image(source='upload', type="numpy")
|
338 |
-
hand_and_face = gr.Checkbox(label='Hand and Face', value=False)
|
339 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
340 |
-
run_button = gr.Button(label="Run")
|
341 |
-
with gr.Column():
|
342 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
343 |
-
run_button.click(fn=openpose, inputs=[input_image, resolution, hand_and_face], outputs=[gallery])
|
344 |
-
|
345 |
-
gr.Markdown("<hr>")
|
346 |
-
with gr.Row():
|
347 |
-
gr.Markdown("## Lineart Anime \n<p>Check Invert to use with Mochi Diffusion.")
|
348 |
-
with gr.Row():
|
349 |
-
with gr.Column():
|
350 |
-
input_image = gr.Image(source='upload', type="numpy")
|
351 |
-
invert = gr.Checkbox(label='Invert', value=True)
|
352 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
353 |
-
run_button = gr.Button(label="Run")
|
354 |
-
with gr.Column():
|
355 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
356 |
-
run_button.click(fn=lineart_anime, inputs=[input_image, resolution, invert], outputs=[gallery])
|
357 |
-
|
358 |
-
gr.Markdown("<hr>")
|
359 |
-
with gr.Row():
|
360 |
-
gr.Markdown("## Lineart \n<p>Check Invert to use with Mochi Diffusion. Inverted image can also be created here for use with ControlNet Scribble.")
|
361 |
-
with gr.Row():
|
362 |
-
with gr.Column():
|
363 |
-
input_image = gr.Image(source='upload', type="numpy")
|
364 |
-
coarse = gr.Checkbox(label='Using coarse model', value=False)
|
365 |
-
invert = gr.Checkbox(label='Invert', value=True)
|
366 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
367 |
-
run_button = gr.Button(label="Run")
|
368 |
-
with gr.Column():
|
369 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
370 |
-
run_button.click(fn=lineart, inputs=[input_image, resolution, coarse, invert], outputs=[gallery])
|
371 |
-
|
372 |
-
# with gr.Row():
|
373 |
-
# gr.Markdown("## Uniformer Segmentation")
|
374 |
-
# with gr.Row():
|
375 |
-
# with gr.Column():
|
376 |
-
# input_image = gr.Image(source='upload', type="numpy")
|
377 |
-
# resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
378 |
-
# run_button = gr.Button(label="Run")
|
379 |
-
# with gr.Column():
|
380 |
-
# gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
381 |
-
# run_button.click(fn=uniformer, inputs=[input_image, resolution], outputs=[gallery])
|
382 |
-
|
383 |
-
gr.Markdown("<hr>")
|
384 |
-
with gr.Row():
|
385 |
-
gr.Markdown("## Oneformer COCO Segmentation")
|
386 |
-
with gr.Row():
|
387 |
-
with gr.Column():
|
388 |
-
input_image = gr.Image(source='upload', type="numpy")
|
389 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
390 |
-
run_button = gr.Button(label="Run")
|
391 |
-
with gr.Column():
|
392 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
393 |
-
run_button.click(fn=oneformer_coco, inputs=[input_image, resolution], outputs=[gallery])
|
394 |
-
|
395 |
-
gr.Markdown("<hr>")
|
396 |
-
with gr.Row():
|
397 |
-
gr.Markdown("## Oneformer ADE20K Segmentation")
|
398 |
-
with gr.Row():
|
399 |
-
with gr.Column():
|
400 |
-
input_image = gr.Image(source='upload', type="numpy")
|
401 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=640, step=64)
|
402 |
-
run_button = gr.Button(label="Run")
|
403 |
-
with gr.Column():
|
404 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
405 |
-
run_button.click(fn=oneformer_ade20k, inputs=[input_image, resolution], outputs=[gallery])
|
406 |
-
|
407 |
-
gr.Markdown("<hr>")
|
408 |
-
with gr.Row():
|
409 |
-
gr.Markdown("## Content Shuffle")
|
410 |
-
with gr.Row():
|
411 |
-
with gr.Column():
|
412 |
-
input_image = gr.Image(source='upload', type="numpy")
|
413 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
414 |
-
run_button = gr.Button(label="Run")
|
415 |
-
with gr.Column():
|
416 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
417 |
-
run_button.click(fn=content_shuffler, inputs=[input_image, resolution], outputs=[gallery])
|
418 |
-
|
419 |
-
gr.Markdown("<hr>")
|
420 |
-
with gr.Row():
|
421 |
-
gr.Markdown("## Color Shuffle")
|
422 |
-
with gr.Row():
|
423 |
-
with gr.Column():
|
424 |
-
input_image = gr.Image(source='upload', type="numpy")
|
425 |
-
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
426 |
-
run_button = gr.Button(label="Run")
|
427 |
-
with gr.Column():
|
428 |
-
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
429 |
-
run_button.click(fn=color_shuffler, inputs=[input_image, resolution], outputs=[gallery])
|
430 |
-
|
431 |
-
|
432 |
-
block.launch(server_name='0.0.0.0')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|