File size: 9,500 Bytes
18dd6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import logging

import torch
import torch.nn.functional as F
from omegaconf import OmegaConf

# from annotator.lama.saicinpainting.training.data.datasets import make_constant_area_crop_params
from annotator.lama.saicinpainting.training.losses.distance_weighting import make_mask_distance_weighter
from annotator.lama.saicinpainting.training.losses.feature_matching import feature_matching_loss, masked_l1_loss
# from annotator.lama.saicinpainting.training.modules.fake_fakes import FakeFakesGenerator
from annotator.lama.saicinpainting.training.trainers.base import BaseInpaintingTrainingModule, make_multiscale_noise
from annotator.lama.saicinpainting.utils import add_prefix_to_keys, get_ramp

LOGGER = logging.getLogger(__name__)


def make_constant_area_crop_batch(batch, **kwargs):
    crop_y, crop_x, crop_height, crop_width = make_constant_area_crop_params(img_height=batch['image'].shape[2],
                                                                             img_width=batch['image'].shape[3],
                                                                             **kwargs)
    batch['image'] = batch['image'][:, :, crop_y : crop_y + crop_height, crop_x : crop_x + crop_width]
    batch['mask'] = batch['mask'][:, :, crop_y: crop_y + crop_height, crop_x: crop_x + crop_width]
    return batch


class DefaultInpaintingTrainingModule(BaseInpaintingTrainingModule):
    def __init__(self, *args, concat_mask=True, rescale_scheduler_kwargs=None, image_to_discriminator='predicted_image',
                 add_noise_kwargs=None, noise_fill_hole=False, const_area_crop_kwargs=None,
                 distance_weighter_kwargs=None, distance_weighted_mask_for_discr=False,
                 fake_fakes_proba=0, fake_fakes_generator_kwargs=None,
                 **kwargs):
        super().__init__(*args, **kwargs)
        self.concat_mask = concat_mask
        self.rescale_size_getter = get_ramp(**rescale_scheduler_kwargs) if rescale_scheduler_kwargs is not None else None
        self.image_to_discriminator = image_to_discriminator
        self.add_noise_kwargs = add_noise_kwargs
        self.noise_fill_hole = noise_fill_hole
        self.const_area_crop_kwargs = const_area_crop_kwargs
        self.refine_mask_for_losses = make_mask_distance_weighter(**distance_weighter_kwargs) \
            if distance_weighter_kwargs is not None else None
        self.distance_weighted_mask_for_discr = distance_weighted_mask_for_discr

        self.fake_fakes_proba = fake_fakes_proba
        if self.fake_fakes_proba > 1e-3:
            self.fake_fakes_gen = FakeFakesGenerator(**(fake_fakes_generator_kwargs or {}))

    def forward(self, batch):
        if self.training and self.rescale_size_getter is not None:
            cur_size = self.rescale_size_getter(self.global_step)
            batch['image'] = F.interpolate(batch['image'], size=cur_size, mode='bilinear', align_corners=False)
            batch['mask'] = F.interpolate(batch['mask'], size=cur_size, mode='nearest')

        if self.training and self.const_area_crop_kwargs is not None:
            batch = make_constant_area_crop_batch(batch, **self.const_area_crop_kwargs)

        img = batch['image']
        mask = batch['mask']

        masked_img = img * (1 - mask)

        if self.add_noise_kwargs is not None:
            noise = make_multiscale_noise(masked_img, **self.add_noise_kwargs)
            if self.noise_fill_hole:
                masked_img = masked_img + mask * noise[:, :masked_img.shape[1]]
            masked_img = torch.cat([masked_img, noise], dim=1)

        if self.concat_mask:
            masked_img = torch.cat([masked_img, mask], dim=1)

        batch['predicted_image'] = self.generator(masked_img)
        batch['inpainted'] = mask * batch['predicted_image'] + (1 - mask) * batch['image']

        if self.fake_fakes_proba > 1e-3:
            if self.training and torch.rand(1).item() < self.fake_fakes_proba:
                batch['fake_fakes'], batch['fake_fakes_masks'] = self.fake_fakes_gen(img, mask)
                batch['use_fake_fakes'] = True
            else:
                batch['fake_fakes'] = torch.zeros_like(img)
                batch['fake_fakes_masks'] = torch.zeros_like(mask)
                batch['use_fake_fakes'] = False

        batch['mask_for_losses'] = self.refine_mask_for_losses(img, batch['predicted_image'], mask) \
            if self.refine_mask_for_losses is not None and self.training \
            else mask

        return batch

    def generator_loss(self, batch):
        img = batch['image']
        predicted_img = batch[self.image_to_discriminator]
        original_mask = batch['mask']
        supervised_mask = batch['mask_for_losses']

        # L1
        l1_value = masked_l1_loss(predicted_img, img, supervised_mask,
                                  self.config.losses.l1.weight_known,
                                  self.config.losses.l1.weight_missing)

        total_loss = l1_value
        metrics = dict(gen_l1=l1_value)

        # vgg-based perceptual loss
        if self.config.losses.perceptual.weight > 0:
            pl_value = self.loss_pl(predicted_img, img, mask=supervised_mask).sum() * self.config.losses.perceptual.weight
            total_loss = total_loss + pl_value
            metrics['gen_pl'] = pl_value

        # discriminator
        # adversarial_loss calls backward by itself
        mask_for_discr = supervised_mask if self.distance_weighted_mask_for_discr else original_mask
        self.adversarial_loss.pre_generator_step(real_batch=img, fake_batch=predicted_img,
                                                 generator=self.generator, discriminator=self.discriminator)
        discr_real_pred, discr_real_features = self.discriminator(img)
        discr_fake_pred, discr_fake_features = self.discriminator(predicted_img)
        adv_gen_loss, adv_metrics = self.adversarial_loss.generator_loss(real_batch=img,
                                                                         fake_batch=predicted_img,
                                                                         discr_real_pred=discr_real_pred,
                                                                         discr_fake_pred=discr_fake_pred,
                                                                         mask=mask_for_discr)
        total_loss = total_loss + adv_gen_loss
        metrics['gen_adv'] = adv_gen_loss
        metrics.update(add_prefix_to_keys(adv_metrics, 'adv_'))

        # feature matching
        if self.config.losses.feature_matching.weight > 0:
            need_mask_in_fm = OmegaConf.to_container(self.config.losses.feature_matching).get('pass_mask', False)
            mask_for_fm = supervised_mask if need_mask_in_fm else None
            fm_value = feature_matching_loss(discr_fake_features, discr_real_features,
                                             mask=mask_for_fm) * self.config.losses.feature_matching.weight
            total_loss = total_loss + fm_value
            metrics['gen_fm'] = fm_value

        if self.loss_resnet_pl is not None:
            resnet_pl_value = self.loss_resnet_pl(predicted_img, img)
            total_loss = total_loss + resnet_pl_value
            metrics['gen_resnet_pl'] = resnet_pl_value

        return total_loss, metrics

    def discriminator_loss(self, batch):
        total_loss = 0
        metrics = {}

        predicted_img = batch[self.image_to_discriminator].detach()
        self.adversarial_loss.pre_discriminator_step(real_batch=batch['image'], fake_batch=predicted_img,
                                                     generator=self.generator, discriminator=self.discriminator)
        discr_real_pred, discr_real_features = self.discriminator(batch['image'])
        discr_fake_pred, discr_fake_features = self.discriminator(predicted_img)
        adv_discr_loss, adv_metrics = self.adversarial_loss.discriminator_loss(real_batch=batch['image'],
                                                                               fake_batch=predicted_img,
                                                                               discr_real_pred=discr_real_pred,
                                                                               discr_fake_pred=discr_fake_pred,
                                                                               mask=batch['mask'])
        total_loss = total_loss + adv_discr_loss
        metrics['discr_adv'] = adv_discr_loss
        metrics.update(add_prefix_to_keys(adv_metrics, 'adv_'))


        if batch.get('use_fake_fakes', False):
            fake_fakes = batch['fake_fakes']
            self.adversarial_loss.pre_discriminator_step(real_batch=batch['image'], fake_batch=fake_fakes,
                                                         generator=self.generator, discriminator=self.discriminator)
            discr_fake_fakes_pred, _ = self.discriminator(fake_fakes)
            fake_fakes_adv_discr_loss, fake_fakes_adv_metrics = self.adversarial_loss.discriminator_loss(
                real_batch=batch['image'],
                fake_batch=fake_fakes,
                discr_real_pred=discr_real_pred,
                discr_fake_pred=discr_fake_fakes_pred,
                mask=batch['mask']
            )
            total_loss = total_loss + fake_fakes_adv_discr_loss
            metrics['discr_adv_fake_fakes'] = fake_fakes_adv_discr_loss
            metrics.update(add_prefix_to_keys(fake_fakes_adv_metrics, 'adv_'))

        return total_loss, metrics