Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import supervision as sv | |
| import PIL.Image as Image | |
| from PIL import ImageDraw, ImageFont # Added ImageDraw and ImageFont import | |
| from ultralytics import YOLO | |
| from huggingface_hub import hf_hub_download, HfApi | |
| import gradio as gr | |
| import torch | |
| import cv2 | |
| import numpy as np | |
| import tempfile | |
| global repo_id | |
| repo_id = "atalaydenknalbant/asl-yolo-models" | |
| def get_model_filenames(repo_id): | |
| """ | |
| Retrieves a list of YOLO model filenames from a specified Hugging Face repository. | |
| This function connects to the Hugging Face Hub API, lists all files | |
| within the given repository, and filters for files ending with '.pt' | |
| to identify potential model weight files. | |
| Args: | |
| repo_id (str): The repository ID on Hugging Face Hub (e.g., "user/repo_name"). | |
| Returns: | |
| list: A list of strings, where each string is the filename of a | |
| '.pt' model found in the repository. | |
| """ | |
| api = HfApi() | |
| files = api.list_repo_files(repo_id) | |
| model_filenames = [file for file in files if file.endswith('.pt')] | |
| return model_filenames | |
| model_filenames = get_model_filenames(repo_id) | |
| def download_models(repo_id, model_id): | |
| """ | |
| Downloads a specific model file from a Hugging Face repository to a local directory. | |
| This function uses `hf_hub_download` to fetch the model identified by `model_id` | |
| from the `repo_id` and saves it in the current working directory. | |
| Args: | |
| repo_id (str): The repository ID on Hugging Face Hub where the model is stored. | |
| model_id (str): The filename of the specific model to download (e.g., 'yolo11n.pt'). | |
| Returns: | |
| str: The local file path to the downloaded model. | |
| """ | |
| hf_hub_download(repo_id, filename=model_id, local_dir=f"./") | |
| return f"./{model_id}" | |
| box_annotator = sv.BoxAnnotator() | |
| category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I', | |
| 9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q', | |
| 17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'} | |
| def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection): | |
| """ | |
| Performs ASL letter detection inference on an image or video using a YOLO model. | |
| This function first downloads the specified YOLO model. It then applies the model | |
| to the input, which can be either an image or a video. For images, it returns an | |
| annotated image. For videos, it processes each frame and reconstructs an annotated video. | |
| Error handling for missing inputs is included, returning blank outputs with messages. | |
| Args: | |
| input_type (str): Specifies the input type, either "Image" or "Video". | |
| image (PIL.Image.Image or None): The input image if `input_type` is "Image". | |
| None otherwise. | |
| video (str or None): The path to the input video file if `input_type` is "Video". | |
| None otherwise. | |
| model_id (str): The filename of the YOLO model to use (e.g., 'yolo11n.pt'). | |
| conf_threshold (float): The confidence threshold for filtering detections. | |
| Detections with confidence below this value are discarded. | |
| iou_threshold (float): The Intersection over Union (IoU) threshold for | |
| Non-Maximum Suppression (NMS) to remove duplicate detections. | |
| max_detection (int): The maximum number of detections to display. | |
| Returns: | |
| tuple: A tuple containing two elements: | |
| - PIL.Image.Image or None: The annotated image if `input_type` was "Image", | |
| otherwise None. | |
| - str or None: The path to the annotated video file if `input_type` was "Video", | |
| otherwise None. | |
| """ | |
| model_path = download_models(repo_id, model_id) | |
| model = YOLO(model_path) | |
| if input_type == "Image": | |
| if image is None: | |
| width, height = 640, 480 | |
| blank_image = Image.new("RGB", (width, height), color="white") | |
| draw = ImageDraw.Draw(blank_image) | |
| message = "No image provided" | |
| font = ImageFont.load_default(size=40) | |
| bbox = draw.textbbox((0, 0), message, font=font) | |
| text_width = bbox[2] - bbox[0] | |
| text_height = bbox[3] - bbox[1] | |
| text_x = (width - text_width) / 2 | |
| text_y = (height - text_height) / 2 | |
| draw.text((text_x, text_y), message, fill="black", font=font) | |
| return blank_image, None | |
| results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0] | |
| detections = sv.Detections.from_ultralytics(results) | |
| labels = [ | |
| f"{category_dict[class_id]} {confidence:.2f}" | |
| for class_id, confidence in zip(detections.class_id, detections.confidence) | |
| ] | |
| annotated_image = box_annotator.annotate(image, detections=detections, labels=labels) | |
| return annotated_image, None | |
| elif input_type == "Video": | |
| if video is None: | |
| width, height = 640, 480 | |
| blank_image = Image.new("RGB", (width, height), color="white") | |
| draw = ImageDraw.Draw(blank_image) | |
| message = "No video provided" | |
| font = ImageFont.load_default(size=40) | |
| bbox = draw.textbbox((0, 0), message, font=font) | |
| text_width = bbox[2] - bbox[0] | |
| text_height = bbox[3] - bbox[1] | |
| text_x = (width - text_width) / 2 | |
| text_y = (height - text_height) / 2 | |
| draw.text((text_x, text_y), message, fill="black", font=font) | |
| temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name | |
| fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
| out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height)) | |
| frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR) | |
| out.write(frame) | |
| out.release() | |
| return None, temp_video_file | |
| cap = cv2.VideoCapture(video) | |
| fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25 | |
| frames = [] | |
| while True: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
| results = model(source=pil_frame, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0] | |
| detections = sv.Detections.from_ultralytics(results) | |
| labels = [ | |
| f"{category_dict[class_id]} {confidence:.2f}" | |
| for class_id, confidence in zip(detections.class_id, detections.confidence) | |
| ] | |
| annotated_frame_array = box_annotator.annotate(np.array(pil_frame), detections=detections, labels=labels) | |
| annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_RGB2BGR) | |
| frames.append(annotated_frame) | |
| cap.release() | |
| if not frames: | |
| return None, None | |
| height_out, width_out, _ = frames[0].shape | |
| temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name | |
| fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
| out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out)) | |
| for f in frames: | |
| out.write(f) | |
| out.release() | |
| return None, temp_video_file | |
| return None, None | |
| def update_visibility(input_type): | |
| """ | |
| Adjusts the visibility of Gradio components based on the selected input type. | |
| This function dynamically shows or hides the image and video input/output | |
| components in the Gradio interface to ensure only relevant fields are visible. | |
| Args: | |
| input_type (str): The selected input type, either "Image" or "Video". | |
| Returns: | |
| tuple: A tuple of `gr.update` objects for the visibility of: | |
| (image input, video input, image output, video output). | |
| """ | |
| if input_type == "Image": | |
| return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) | |
| else: | |
| return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True) | |
| def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection): | |
| """ | |
| Wrapper function for `yolo_inference` specifically for Gradio examples that use images. | |
| This function simplifies the `yolo_inference` call for the `gr.Examples` component, | |
| ensuring only image-based inference is performed for predefined examples. | |
| Args: | |
| image (PIL.Image.Image): The input image for the example. | |
| model_id (str): The identifier of the YOLO model to use. | |
| conf_threshold (float): The confidence threshold. | |
| iou_threshold (float): The IoU threshold. | |
| max_detection (int): The maximum number of detections. | |
| Returns: | |
| PIL.Image.Image or None: The annotated image. Returns None if no image is processed. | |
| """ | |
| annotated_image, _ = yolo_inference( | |
| input_type="Image", | |
| image=image, | |
| video=None, | |
| model_id=model_id, | |
| conf_threshold=conf_threshold, | |
| iou_threshold=iou_threshold, | |
| max_detection=max_detection | |
| ) | |
| return annotated_image | |
| with gr.Blocks(title="ASL Letter Detector") as app: | |
| gr.HTML( | |
| """ | |
| <h1 style='text-align: center'> | |
| YOLO Powered ASL(American Sign Language) Letter Detector PSA: It can't detect J or Z | |
| </h1> | |
| """) | |
| gr.Markdown("Upload an image or video for ASL letter detection using a YOLO model.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(type="pil", label="Image Input", interactive=True, visible=True) | |
| video = gr.Video(label="Video Input", interactive=True, visible=False) | |
| input_type = gr.Radio( | |
| choices=["Image", "Video"], | |
| value="Image", | |
| label="Input Type", | |
| ) | |
| model_id = gr.Dropdown( | |
| label="Model", | |
| choices=model_filenames, | |
| value=model_filenames[0] if model_filenames else "", | |
| ) | |
| conf_threshold = gr.Slider( | |
| label="Confidence Threshold", | |
| minimum=0.1, | |
| maximum=1.0, | |
| step=0.1, | |
| value=0.45, | |
| ) | |
| iou_threshold = gr.Slider( | |
| label="IoU Threshold", | |
| minimum=0.1, | |
| maximum=1.0, | |
| step=0.1, | |
| value=0.7, | |
| ) | |
| max_detection = gr.Slider( | |
| label="Max Detection", | |
| minimum=1, | |
| step=1, | |
| value=1, | |
| ) | |
| yolov_infer = gr.Button(value="Detect Objects") | |
| with gr.Column(): | |
| output_image = gr.Image(type="pil", label="Annotated Image", interactive=False, visible=True) | |
| output_video = gr.Video(label="Annotated Video", interactive=False, visible=False) | |
| gr.DeepLinkButton() | |
| input_type.change( | |
| fn=update_visibility, | |
| inputs=input_type, | |
| outputs=[image, video, output_image, output_video], | |
| ) | |
| yolov_infer.click( | |
| fn=yolo_inference, | |
| inputs=[ | |
| input_type, | |
| image, | |
| video, | |
| model_id, | |
| conf_threshold, | |
| iou_threshold, | |
| max_detection, | |
| ], | |
| outputs=[output_image, output_video], | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["b.jpg", "yolo11x.pt", 0.45, 0.7, 1], | |
| ["a.jpg", "yolo11s.pt", 0.45, 0.7, 1], | |
| ["y.jpg", "yolo11m.pt", 0.45, 0.7, 1], | |
| ], | |
| fn=yolo_inference_for_examples, | |
| inputs=[ | |
| image, | |
| model_id, | |
| conf_threshold, | |
| iou_threshold, | |
| max_detection, | |
| ], | |
| outputs=[output_image], | |
| cache_examples=True, | |
| label="Examples (Images)", | |
| ) | |
| app.launch(mcp_server=True) |