Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,272 Bytes
cb1fbea 1103cf7 c030bd6 1c082c8 636a182 0472215 9260bc2 cb1fbea 1c082c8 56f263d 1c082c8 b29d408 1c082c8 cb1fbea 56f263d cb1fbea 55d4b6f cb1fbea 6f78ed1 0472215 9260bc2 56f263d 9260bc2 56f263d 9260bc2 56f263d 9260bc2 56f263d 9260bc2 56f263d 9260bc2 56f263d cb1fbea 64a71dd cb1fbea 9260bc2 cb1fbea 9260bc2 56f263d 9260bc2 56f263d 9260bc2 56f263d 9260bc2 cb1fbea 9260bc2 cb1fbea 9260bc2 36e4f2e 9260bc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import spaces
import supervision as sv
import PIL.Image as Image
from PIL import ImageDraw, ImageFont # Added ImageDraw and ImageFont import
from ultralytics import YOLO
from huggingface_hub import hf_hub_download, HfApi
import gradio as gr
import torch
import cv2
import numpy as np
import tempfile
global repo_id
repo_id = "atalaydenknalbant/asl-yolo-models"
def get_model_filenames(repo_id):
"""
Retrieves a list of YOLO model filenames from a specified Hugging Face repository.
This function connects to the Hugging Face Hub API, lists all files
within the given repository, and filters for files ending with '.pt'
to identify potential model weight files.
Args:
repo_id (str): The repository ID on Hugging Face Hub (e.g., "user/repo_name").
Returns:
list: A list of strings, where each string is the filename of a
'.pt' model found in the repository.
"""
api = HfApi()
files = api.list_repo_files(repo_id)
model_filenames = [file for file in files if file.endswith('.pt')]
return model_filenames
model_filenames = get_model_filenames(repo_id)
def download_models(repo_id, model_id):
"""
Downloads a specific model file from a Hugging Face repository to a local directory.
This function uses `hf_hub_download` to fetch the model identified by `model_id`
from the `repo_id` and saves it in the current working directory.
Args:
repo_id (str): The repository ID on Hugging Face Hub where the model is stored.
model_id (str): The filename of the specific model to download (e.g., 'yolo11n.pt').
Returns:
str: The local file path to the downloaded model.
"""
hf_hub_download(repo_id, filename=model_id, local_dir=f"./")
return f"./{model_id}"
box_annotator = sv.BoxAnnotator()
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q',
17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'}
@spaces.GPU
def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection):
"""
Performs ASL letter detection inference on an image or video using a YOLO model.
This function first downloads the specified YOLO model. It then applies the model
to the input, which can be either an image or a video. For images, it returns an
annotated image. For videos, it processes each frame and reconstructs an annotated video.
Error handling for missing inputs is included, returning blank outputs with messages.
Args:
input_type (str): Specifies the input type, either "Image" or "Video".
image (PIL.Image.Image or None): The input image if `input_type` is "Image".
None otherwise.
video (str or None): The path to the input video file if `input_type` is "Video".
None otherwise.
model_id (str): The filename of the YOLO model to use (e.g., 'yolo11n.pt').
conf_threshold (float): The confidence threshold for filtering detections.
Detections with confidence below this value are discarded.
iou_threshold (float): The Intersection over Union (IoU) threshold for
Non-Maximum Suppression (NMS) to remove duplicate detections.
max_detection (int): The maximum number of detections to display.
Returns:
tuple: A tuple containing two elements:
- PIL.Image.Image or None: The annotated image if `input_type` was "Image",
otherwise None.
- str or None: The path to the annotated video file if `input_type` was "Video",
otherwise None.
"""
model_path = download_models(repo_id, model_id)
model = YOLO(model_path)
if input_type == "Image":
if image is None:
width, height = 640, 480
blank_image = Image.new("RGB", (width, height), color="white")
draw = ImageDraw.Draw(blank_image)
message = "No image provided"
font = ImageFont.load_default(size=40)
bbox = draw.textbbox((0, 0), message, font=font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
text_x = (width - text_width) / 2
text_y = (height - text_height) / 2
draw.text((text_x, text_y), message, fill="black", font=font)
return blank_image, None
results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
detections = sv.Detections.from_ultralytics(results)
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
return annotated_image, None
elif input_type == "Video":
if video is None:
width, height = 640, 480
blank_image = Image.new("RGB", (width, height), color="white")
draw = ImageDraw.Draw(blank_image)
message = "No video provided"
font = ImageFont.load_default(size=40)
bbox = draw.textbbox((0, 0), message, font=font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
text_x = (width - text_width) / 2
text_y = (height - text_height) / 2
draw.text((text_x, text_y), message, fill="black", font=font)
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height))
frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR)
out.write(frame)
out.release()
return None, temp_video_file
cap = cv2.VideoCapture(video)
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
results = model(source=pil_frame, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
detections = sv.Detections.from_ultralytics(results)
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_frame_array = box_annotator.annotate(np.array(pil_frame), detections=detections, labels=labels)
annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_RGB2BGR)
frames.append(annotated_frame)
cap.release()
if not frames:
return None, None
height_out, width_out, _ = frames[0].shape
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out))
for f in frames:
out.write(f)
out.release()
return None, temp_video_file
return None, None
def update_visibility(input_type):
"""
Adjusts the visibility of Gradio components based on the selected input type.
This function dynamically shows or hides the image and video input/output
components in the Gradio interface to ensure only relevant fields are visible.
Args:
input_type (str): The selected input type, either "Image" or "Video".
Returns:
tuple: A tuple of `gr.update` objects for the visibility of:
(image input, video input, image output, video output).
"""
if input_type == "Image":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection):
"""
Wrapper function for `yolo_inference` specifically for Gradio examples that use images.
This function simplifies the `yolo_inference` call for the `gr.Examples` component,
ensuring only image-based inference is performed for predefined examples.
Args:
image (PIL.Image.Image): The input image for the example.
model_id (str): The identifier of the YOLO model to use.
conf_threshold (float): The confidence threshold.
iou_threshold (float): The IoU threshold.
max_detection (int): The maximum number of detections.
Returns:
PIL.Image.Image or None: The annotated image. Returns None if no image is processed.
"""
annotated_image, _ = yolo_inference(
input_type="Image",
image=image,
video=None,
model_id=model_id,
conf_threshold=conf_threshold,
iou_threshold=iou_threshold,
max_detection=max_detection
)
return annotated_image
with gr.Blocks(title="ASL Letter Detector") as app:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLO Powered ASL(American Sign Language) Letter Detector PSA: It can't detect J or Z
</h1>
""")
gr.Markdown("Upload an image or video for ASL letter detection using a YOLO model.")
with gr.Row():
with gr.Column():
image = gr.Image(type="pil", label="Image Input", interactive=True, visible=True)
video = gr.Video(label="Video Input", interactive=True, visible=False)
input_type = gr.Radio(
choices=["Image", "Video"],
value="Image",
label="Input Type",
)
model_id = gr.Dropdown(
label="Model",
choices=model_filenames,
value=model_filenames[0] if model_filenames else "",
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.45,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.7,
)
max_detection = gr.Slider(
label="Max Detection",
minimum=1,
step=1,
value=1,
)
yolov_infer = gr.Button(value="Detect Objects")
with gr.Column():
output_image = gr.Image(type="pil", label="Annotated Image", interactive=False, visible=True)
output_video = gr.Video(label="Annotated Video", interactive=False, visible=False)
gr.DeepLinkButton()
input_type.change(
fn=update_visibility,
inputs=input_type,
outputs=[image, video, output_image, output_video],
)
yolov_infer.click(
fn=yolo_inference,
inputs=[
input_type,
image,
video,
model_id,
conf_threshold,
iou_threshold,
max_detection,
],
outputs=[output_image, output_video],
)
gr.Examples(
examples=[
["b.jpg", "yolo11x.pt", 0.45, 0.7, 1],
["a.jpg", "yolo11s.pt", 0.45, 0.7, 1],
["y.jpg", "yolo11m.pt", 0.45, 0.7, 1],
],
fn=yolo_inference_for_examples,
inputs=[
image,
model_id,
conf_threshold,
iou_threshold,
max_detection,
],
outputs=[output_image],
cache_examples=True,
label="Examples (Images)",
)
app.launch(mcp_server=True) |