Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
3 |
+
from transformers import pipeline
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Use the relative path where the CSV is uploaded
|
9 |
+
csv_file_path = os.path.join(os.getcwd(), 'Analytics_Vidhya_Free_Course_data.csv')
|
10 |
+
|
11 |
+
# Load the dataset
|
12 |
+
df = pd.read_csv(csv_file_path, encoding='ISO-8859-1')
|
13 |
+
|
14 |
+
# Load the pre-trained model for embeddings (using SentenceTransformers)
|
15 |
+
model = SentenceTransformer('multi-qa-mpnet-base-dot-v1')
|
16 |
+
|
17 |
+
# Combine title and description to create a full text for each course
|
18 |
+
df['full_text'] = df.iloc[:,0] + " " + df.iloc[:,1] + " " + df['Instructor Name'] + " " + str(df['Rating']) + " " + df['Category']
|
19 |
+
|
20 |
+
# Convert full course texts into embeddings
|
21 |
+
course_embeddings = model.encode(df['full_text'].tolist(), convert_to_tensor=True)
|
22 |
+
|
23 |
+
# Function to expand the query using paraphrasing
|
24 |
+
def expand_query(query):
|
25 |
+
paraphraser = pipeline('text2text-generation', model='Vamsi/T5_Paraphrase_Paws')
|
26 |
+
expanded_queries = paraphraser(query, num_return_sequences=3, max_length=50, do_sample=True)
|
27 |
+
return [q['generated_text'] for q in expanded_queries]
|
28 |
+
|
29 |
+
# Function to search for the most relevant courses
|
30 |
+
def search_courses(query, level_filter=None, category_filter=None, top_k=3):
|
31 |
+
# Step 1: Expand the query using paraphrasing
|
32 |
+
expanded_queries = expand_query(query)
|
33 |
+
|
34 |
+
# Step 2: Initialize an array to store all similarities
|
35 |
+
all_similarities = []
|
36 |
+
|
37 |
+
for expanded_query in expanded_queries:
|
38 |
+
# Convert each expanded query into an embedding
|
39 |
+
query_embedding = model.encode(expanded_query, convert_to_tensor=True)
|
40 |
+
|
41 |
+
# Compute cosine similarities between the query embedding and course embeddings
|
42 |
+
similarities = util.pytorch_cos_sim(query_embedding, course_embeddings)[0]
|
43 |
+
|
44 |
+
# Append to the list of all similarities
|
45 |
+
all_similarities.append(similarities)
|
46 |
+
|
47 |
+
# Step 3: Convert the list of tensors to a single tensor by taking the maximum similarity for each course
|
48 |
+
aggregated_similarities = torch.max(torch.stack(all_similarities), dim=0)[0]
|
49 |
+
|
50 |
+
# Step 4: Apply filters
|
51 |
+
filtered_df = df.copy()
|
52 |
+
if level_filter:
|
53 |
+
filtered_df = filtered_df[filtered_df['Level of Difficulty'] == level_filter]
|
54 |
+
if category_filter:
|
55 |
+
filtered_df = filtered_df[filtered_df['Category'] == category_filter]
|
56 |
+
|
57 |
+
if filtered_df.empty:
|
58 |
+
return "<p>No matching courses found.</p>"
|
59 |
+
|
60 |
+
# Recalculate similarities for the filtered data
|
61 |
+
filtered_similarities = aggregated_similarities[filtered_df.index]
|
62 |
+
|
63 |
+
# Step 5: Get top_k most similar courses
|
64 |
+
top_results = filtered_similarities.topk(k=min(top_k, len(filtered_similarities)))
|
65 |
+
|
66 |
+
# Prepare the output as clickable links
|
67 |
+
results = []
|
68 |
+
for idx in top_results.indices:
|
69 |
+
idx = int(idx)
|
70 |
+
course_title = filtered_df.iloc[idx]['Course Title']
|
71 |
+
course_description = filtered_df.iloc[idx,1]
|
72 |
+
course_url = filtered_df.iloc[idx,-1]
|
73 |
+
|
74 |
+
|
75 |
+
# Format the result as a clickable hyperlink using raw HTML
|
76 |
+
course_link = f'<a href="{course_url}" target="_blank">{course_title}</a>'
|
77 |
+
results.append(f"<strong>{course_link}</strong><br>{course_description}<br><br>")
|
78 |
+
|
79 |
+
# Combine all results into an HTML formatted list
|
80 |
+
return "<ol>" + "".join([f"<li>{result}</li>" for result in results]) + "</ol>"
|
81 |
+
|
82 |
+
# Create Gradio UI
|
83 |
+
def create_gradio_interface():
|
84 |
+
with gr.Blocks() as demo:
|
85 |
+
gr.Markdown("# Analytics Vidhya Free Courses")
|
86 |
+
gr.Markdown("Enter your query and use filters to narrow down the search.")
|
87 |
+
|
88 |
+
# Input elements
|
89 |
+
query = gr.Textbox(label=" Search for a course", placeholder="Enter course topic or description")
|
90 |
+
|
91 |
+
# Filters (in a collapsible form)
|
92 |
+
with gr.Accordion(" Filters", open=False):
|
93 |
+
level_filter = gr.Dropdown(choices=["Beginner", "Intermediate", "Advanced"], label=" Course Level", multiselect=False)
|
94 |
+
category_filter = gr.Dropdown(choices=["Data Science", "Machine Learning", "Deep Learning", "AI", "NLP"], label=" Category", multiselect=False)
|
95 |
+
|
96 |
+
# Search button
|
97 |
+
search_button = gr.Button("Search")
|
98 |
+
|
99 |
+
# Output HTML for displaying results
|
100 |
+
output = gr.HTML(label="Search Results")
|
101 |
+
|
102 |
+
# On button click, trigger the search function
|
103 |
+
search_button.click(fn=search_courses, inputs=[query, level_filter, category_filter], outputs=output)
|
104 |
+
|
105 |
+
return demo
|
106 |
+
|
107 |
+
# Launch Gradio interface
|
108 |
+
demo = create_gradio_interface()
|
109 |
+
demo.launch(share=True, debug=True)
|