mistraloo-sft / app.py
asusevski's picture
fixed peft in app.py
17ede41
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from peft import PeftModel, PeftConfig
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
peft_model_id = "asusevski/mistraloo-sft"
peft_config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(peft_config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, peft_model_id).to(device)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(
peft_config.base_model_name_or_path,
add_bos_token=True
)
def uwaterloo_output(post_title, post_text):
prompt = f"""
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Respond to the reddit post in the style of a University of Waterloo student.
### Input:
{post_title}
{post_text}
### Response:
"""
model_input = tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
model_output = model.generate(**model_input, max_new_tokens=256, repetition_penalty=1.15)[0]
output = tokenizer.decode(model_output, skip_special_tokens=True)
return output.split('### Response:\n')[-1]
iface = gr.Interface(
fn=uwaterloo_output,
inputs=[
gr.Textbox("", label="Post Title"),
gr.Textbox("", label="Post Text"),
],
outputs=gr.Textbox("", label="Mistraloo-SFT")
)
iface.launch()