Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplat
|
|
3 |
from langchain.schema import SystemMessage
|
4 |
import streamlit as st
|
5 |
import torch
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
8 |
import nltk
|
9 |
import json
|
@@ -46,7 +46,7 @@ if dataset_file:
|
|
46 |
df = pd.read_csv(dataset_file)
|
47 |
|
48 |
# Initialize tokenizer and model
|
49 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
50 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
51 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, return_full_text=True)
|
52 |
llm = HuggingFacePipeline(pipeline=pipe)
|
|
|
3 |
from langchain.schema import SystemMessage
|
4 |
import streamlit as st
|
5 |
import torch
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, LlamaTokenizer
|
7 |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
8 |
import nltk
|
9 |
import json
|
|
|
46 |
df = pd.read_csv(dataset_file)
|
47 |
|
48 |
# Initialize tokenizer and model
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) or LlamaTokenizer.from_pretrained(model_name)
|
50 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
51 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, return_full_text=True)
|
52 |
llm = HuggingFacePipeline(pipeline=pipe)
|