Spaces:
Sleeping
Sleeping
Aspiring Astro
commited on
Commit
•
56da072
1
Parent(s):
6426419
add a clear btn
Browse files
app.ipynb
CHANGED
@@ -20,8 +20,9 @@
|
|
20 |
"#| export\n",
|
21 |
"from fastai.vision.all import *\n",
|
22 |
"import gradio as gr\n",
|
23 |
-
"
|
24 |
-
"
|
|
|
25 |
"\n",
|
26 |
"title = \"FastAI - Big Cats Classifier\"\n",
|
27 |
"description = \"Classify big cats using all Resnet models available pre-trained in FastAI\""
|
@@ -124,7 +125,7 @@
|
|
124 |
"name": "stdout",
|
125 |
"output_type": "stream",
|
126 |
"text": [
|
127 |
-
"{'african leopard': 0.
|
128 |
]
|
129 |
},
|
130 |
{
|
@@ -168,7 +169,7 @@
|
|
168 |
"name": "stdout",
|
169 |
"output_type": "stream",
|
170 |
"text": [
|
171 |
-
"{'african leopard':
|
172 |
]
|
173 |
},
|
174 |
{
|
@@ -212,7 +213,7 @@
|
|
212 |
"name": "stdout",
|
213 |
"output_type": "stream",
|
214 |
"text": [
|
215 |
-
"{'african leopard':
|
216 |
]
|
217 |
},
|
218 |
{
|
@@ -256,7 +257,7 @@
|
|
256 |
"name": "stdout",
|
257 |
"output_type": "stream",
|
258 |
"text": [
|
259 |
-
"{'african leopard':
|
260 |
]
|
261 |
},
|
262 |
{
|
@@ -300,7 +301,7 @@
|
|
300 |
"name": "stdout",
|
301 |
"output_type": "stream",
|
302 |
"text": [
|
303 |
-
"{'african leopard':
|
304 |
]
|
305 |
},
|
306 |
{
|
@@ -344,7 +345,7 @@
|
|
344 |
"name": "stdout",
|
345 |
"output_type": "stream",
|
346 |
"text": [
|
347 |
-
"{'african leopard': 0.
|
348 |
]
|
349 |
},
|
350 |
{
|
@@ -388,7 +389,7 @@
|
|
388 |
"name": "stdout",
|
389 |
"output_type": "stream",
|
390 |
"text": [
|
391 |
-
"{'african leopard':
|
392 |
]
|
393 |
},
|
394 |
{
|
@@ -432,7 +433,7 @@
|
|
432 |
"name": "stdout",
|
433 |
"output_type": "stream",
|
434 |
"text": [
|
435 |
-
"{'african leopard': 2.
|
436 |
]
|
437 |
}
|
438 |
],
|
@@ -447,7 +448,7 @@
|
|
447 |
},
|
448 |
{
|
449 |
"cell_type": "code",
|
450 |
-
"execution_count":
|
451 |
"id": "a48e7483-c04b-4048-a1ae-34a8c7986a57",
|
452 |
"metadata": {},
|
453 |
"outputs": [
|
@@ -496,21 +497,6 @@
|
|
496 |
},
|
497 |
"metadata": {},
|
498 |
"output_type": "display_data"
|
499 |
-
},
|
500 |
-
{
|
501 |
-
"name": "stdout",
|
502 |
-
"output_type": "stream",
|
503 |
-
"text": [
|
504 |
-
"Keyboard interruption in main thread... closing server.\n"
|
505 |
-
]
|
506 |
-
},
|
507 |
-
{
|
508 |
-
"data": {
|
509 |
-
"text/plain": []
|
510 |
-
},
|
511 |
-
"execution_count": 6,
|
512 |
-
"metadata": {},
|
513 |
-
"output_type": "execute_result"
|
514 |
}
|
515 |
],
|
516 |
"source": [
|
@@ -522,7 +508,9 @@
|
|
522 |
" with gr.Column(variant=\"panel\"):\n",
|
523 |
" image = gr.inputs.Image(label=\"Pick an image\")\n",
|
524 |
" model = gr.inputs.Dropdown(label=\"Select a model\", choices=models)\n",
|
525 |
-
"
|
|
|
|
|
526 |
" with gr.Column(variant=\"panel\"):\n",
|
527 |
" selected = gr.outputs.Textbox(label=\"Active Model\")\n",
|
528 |
" with gr.Row(equal_height=True):\n",
|
@@ -530,13 +518,14 @@
|
|
530 |
" losses=gr.outputs.Image(type='filepath', label=\"Top Losses\")\n",
|
531 |
" result = gr.outputs.Label(label=\"Result\")\n",
|
532 |
" \n",
|
533 |
-
" btnClassify.click(fn=classify_image, inputs=image, outputs=result)\n",
|
534 |
" img_gallery = gr.Examples(examples=example_images, inputs=image)\n",
|
535 |
"\n",
|
536 |
-
" # Register all
|
537 |
" model.change(fn=select_model, inputs=model, outputs=selected)\n",
|
538 |
" model.change(fn=update_matrix, outputs=matrix)\n",
|
539 |
" model.change(fn=update_losses, outputs=losses)\n",
|
|
|
|
|
540 |
"\n",
|
541 |
"demo.launch(debug=True, inline=False)\n",
|
542 |
" # intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=example_images, title=title, description=description )\n",
|
@@ -546,18 +535,10 @@
|
|
546 |
},
|
547 |
{
|
548 |
"cell_type": "code",
|
549 |
-
"execution_count":
|
550 |
"id": "cab071f9-7c3b-4b35-a0d1-3687731ffce5",
|
551 |
"metadata": {},
|
552 |
-
"outputs": [
|
553 |
-
{
|
554 |
-
"name": "stdout",
|
555 |
-
"output_type": "stream",
|
556 |
-
"text": [
|
557 |
-
"Export successful\n"
|
558 |
-
]
|
559 |
-
}
|
560 |
-
],
|
561 |
"source": [
|
562 |
"import nbdev\n",
|
563 |
"nbdev.export.nb_export('app.ipynb', './')\n",
|
|
|
20 |
"#| export\n",
|
21 |
"from fastai.vision.all import *\n",
|
22 |
"import gradio as gr\n",
|
23 |
+
"\n",
|
24 |
+
"interpretation='default'\n",
|
25 |
+
"enable_queue=True\n",
|
26 |
"\n",
|
27 |
"title = \"FastAI - Big Cats Classifier\"\n",
|
28 |
"description = \"Classify big cats using all Resnet models available pre-trained in FastAI\""
|
|
|
125 |
"name": "stdout",
|
126 |
"output_type": "stream",
|
127 |
"text": [
|
128 |
+
"{'african leopard': 0.00045245178625918925, 'cheetah': 0.9994743466377258, 'clouded leopard': 3.061432778395101e-07, 'cougar': 8.726581654627807e-06, 'jaguar': 4.878858817392029e-05, 'lion': 1.4129628652881365e-05, 'snow leopard': 1.2738197483486147e-06, 'tiger': 1.1983513736879559e-08}\n"
|
129 |
]
|
130 |
},
|
131 |
{
|
|
|
169 |
"name": "stdout",
|
170 |
"output_type": "stream",
|
171 |
"text": [
|
172 |
+
"{'african leopard': 8.918660228118824e-07, 'cheetah': 3.004239079729132e-09, 'clouded leopard': 1.0275688282490592e-06, 'cougar': 1.8215871477877954e-08, 'jaguar': 0.9999979734420776, 'lion': 7.327587425720594e-10, 'snow leopard': 1.3988608316140017e-07, 'tiger': 4.418302523845341e-08}\n"
|
173 |
]
|
174 |
},
|
175 |
{
|
|
|
213 |
"name": "stdout",
|
214 |
"output_type": "stream",
|
215 |
"text": [
|
216 |
+
"{'african leopard': 1.279351291572084e-08, 'cheetah': 3.040315732505405e-08, 'clouded leopard': 4.387358387702989e-08, 'cougar': 1.2642824458453106e-06, 'jaguar': 3.0061545430726255e-07, 'lion': 2.5054502472698914e-08, 'snow leopard': 4.821659516096588e-08, 'tiger': 0.9999983310699463}\n"
|
217 |
]
|
218 |
},
|
219 |
{
|
|
|
257 |
"name": "stdout",
|
258 |
"output_type": "stream",
|
259 |
"text": [
|
260 |
+
"{'african leopard': 2.2317146886052797e-06, 'cheetah': 6.153353297122521e-06, 'clouded leopard': 3.5761433991865488e-06, 'cougar': 0.9940788745880127, 'jaguar': 7.271950153153739e-08, 'lion': 0.005906379781663418, 'snow leopard': 1.0360908220263809e-07, 'tiger': 2.569006483099656e-06}\n"
|
261 |
]
|
262 |
},
|
263 |
{
|
|
|
301 |
"name": "stdout",
|
302 |
"output_type": "stream",
|
303 |
"text": [
|
304 |
+
"{'african leopard': 7.383512135028525e-10, 'cheetah': 1.6924343526625307e-06, 'clouded leopard': 3.8847122740826023e-10, 'cougar': 1.4941306858418102e-08, 'jaguar': 3.277633942033731e-09, 'lion': 0.9999983310699463, 'snow leopard': 4.2623696572263725e-08, 'tiger': 5.7686470711360016e-08}\n"
|
305 |
]
|
306 |
},
|
307 |
{
|
|
|
345 |
"name": "stdout",
|
346 |
"output_type": "stream",
|
347 |
"text": [
|
348 |
+
"{'african leopard': 0.11080536246299744, 'cheetah': 0.00025237080990336835, 'clouded leopard': 0.0003655211767181754, 'cougar': 1.1126862773380708e-05, 'jaguar': 0.8603838086128235, 'lion': 8.311066630994901e-05, 'snow leopard': 0.028046416118741035, 'tiger': 5.234780110185966e-05}\n"
|
349 |
]
|
350 |
},
|
351 |
{
|
|
|
389 |
"name": "stdout",
|
390 |
"output_type": "stream",
|
391 |
"text": [
|
392 |
+
"{'african leopard': 5.991949336703328e-08, 'cheetah': 1.2888077272066312e-08, 'clouded leopard': 0.9999984502792358, 'cougar': 7.355600928349304e-07, 'jaguar': 5.131531679580803e-07, 'lion': 5.543293823961903e-09, 'snow leopard': 3.404375448212704e-08, 'tiger': 2.0324510785485472e-07}\n"
|
393 |
]
|
394 |
},
|
395 |
{
|
|
|
433 |
"name": "stdout",
|
434 |
"output_type": "stream",
|
435 |
"text": [
|
436 |
+
"{'african leopard': 2.2017589799361303e-05, 'cheetah': 9.802879503695294e-05, 'clouded leopard': 0.0109814228489995, 'cougar': 1.8166520021623e-06, 'jaguar': 5.0095695769414306e-06, 'lion': 5.28784084963263e-06, 'snow leopard': 0.988881528377533, 'tiger': 4.889693173026899e-06}\n"
|
437 |
]
|
438 |
}
|
439 |
],
|
|
|
448 |
},
|
449 |
{
|
450 |
"cell_type": "code",
|
451 |
+
"execution_count": null,
|
452 |
"id": "a48e7483-c04b-4048-a1ae-34a8c7986a57",
|
453 |
"metadata": {},
|
454 |
"outputs": [
|
|
|
497 |
},
|
498 |
"metadata": {},
|
499 |
"output_type": "display_data"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
}
|
501 |
],
|
502 |
"source": [
|
|
|
508 |
" with gr.Column(variant=\"panel\"):\n",
|
509 |
" image = gr.inputs.Image(label=\"Pick an image\")\n",
|
510 |
" model = gr.inputs.Dropdown(label=\"Select a model\", choices=models)\n",
|
511 |
+
" with gr.Row(equal_height=True):\n",
|
512 |
+
" btnClassify = gr.Button(\"Classify\")\n",
|
513 |
+
" btnClear = gr.Button(\"Clear\")\n",
|
514 |
" with gr.Column(variant=\"panel\"):\n",
|
515 |
" selected = gr.outputs.Textbox(label=\"Active Model\")\n",
|
516 |
" with gr.Row(equal_height=True):\n",
|
|
|
518 |
" losses=gr.outputs.Image(type='filepath', label=\"Top Losses\")\n",
|
519 |
" result = gr.outputs.Label(label=\"Result\")\n",
|
520 |
" \n",
|
|
|
521 |
" img_gallery = gr.Examples(examples=example_images, inputs=image)\n",
|
522 |
"\n",
|
523 |
+
" # Register all event listeners\n",
|
524 |
" model.change(fn=select_model, inputs=model, outputs=selected)\n",
|
525 |
" model.change(fn=update_matrix, outputs=matrix)\n",
|
526 |
" model.change(fn=update_losses, outputs=losses)\n",
|
527 |
+
" btnClassify.click(fn=classify_image, inputs=image, outputs=result)\n",
|
528 |
+
" btnClear.click(fn=lambda: gr.Image.update(value=None), inputs=None, outputs=None)\n",
|
529 |
"\n",
|
530 |
"demo.launch(debug=True, inline=False)\n",
|
531 |
" # intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=example_images, title=title, description=description )\n",
|
|
|
535 |
},
|
536 |
{
|
537 |
"cell_type": "code",
|
538 |
+
"execution_count": null,
|
539 |
"id": "cab071f9-7c3b-4b35-a0d1-3687731ffce5",
|
540 |
"metadata": {},
|
541 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
"source": [
|
543 |
"import nbdev\n",
|
544 |
"nbdev.export.nb_export('app.ipynb', './')\n",
|
app.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
2 |
|
3 |
# %% auto 0
|
4 |
-
__all__ = ['
|
5 |
-
'classify_image', 'select_model', 'update_matrix', 'update_losses']
|
6 |
|
7 |
# %% app.ipynb 1
|
8 |
from fastai.vision.all import *
|
9 |
import gradio as gr
|
10 |
-
|
11 |
-
|
|
|
12 |
|
13 |
title = "FastAI - Big Cats Classifier"
|
14 |
description = "Classify big cats using all Resnet models available pre-trained in FastAI"
|
@@ -55,7 +56,9 @@ with demo:
|
|
55 |
with gr.Column(variant="panel"):
|
56 |
image = gr.inputs.Image(label="Pick an image")
|
57 |
model = gr.inputs.Dropdown(label="Select a model", choices=models)
|
58 |
-
|
|
|
|
|
59 |
with gr.Column(variant="panel"):
|
60 |
selected = gr.outputs.Textbox(label="Active Model")
|
61 |
with gr.Row(equal_height=True):
|
@@ -63,13 +66,14 @@ with demo:
|
|
63 |
losses=gr.outputs.Image(type='filepath', label="Top Losses")
|
64 |
result = gr.outputs.Label(label="Result")
|
65 |
|
66 |
-
btnClassify.click(fn=classify_image, inputs=image, outputs=result)
|
67 |
img_gallery = gr.Examples(examples=example_images, inputs=image)
|
68 |
|
69 |
-
# Register all
|
70 |
model.change(fn=select_model, inputs=model, outputs=selected)
|
71 |
model.change(fn=update_matrix, outputs=matrix)
|
72 |
model.change(fn=update_losses, outputs=losses)
|
|
|
|
|
73 |
|
74 |
demo.launch(debug=True, inline=False)
|
75 |
# intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=example_images, title=title, description=description )
|
|
|
1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
2 |
|
3 |
# %% auto 0
|
4 |
+
__all__ = ['interpretation', 'enable_queue', 'title', 'description', 'learners', 'models', 'active_name', 'active_model',
|
5 |
+
'example_images', 'demo', 'classify_image', 'select_model', 'update_matrix', 'update_losses']
|
6 |
|
7 |
# %% app.ipynb 1
|
8 |
from fastai.vision.all import *
|
9 |
import gradio as gr
|
10 |
+
|
11 |
+
interpretation='default'
|
12 |
+
enable_queue=True
|
13 |
|
14 |
title = "FastAI - Big Cats Classifier"
|
15 |
description = "Classify big cats using all Resnet models available pre-trained in FastAI"
|
|
|
56 |
with gr.Column(variant="panel"):
|
57 |
image = gr.inputs.Image(label="Pick an image")
|
58 |
model = gr.inputs.Dropdown(label="Select a model", choices=models)
|
59 |
+
with gr.Row(equal_height=True):
|
60 |
+
btnClassify = gr.Button("Classify")
|
61 |
+
btnClear = gr.Button("Clear")
|
62 |
with gr.Column(variant="panel"):
|
63 |
selected = gr.outputs.Textbox(label="Active Model")
|
64 |
with gr.Row(equal_height=True):
|
|
|
66 |
losses=gr.outputs.Image(type='filepath', label="Top Losses")
|
67 |
result = gr.outputs.Label(label="Result")
|
68 |
|
|
|
69 |
img_gallery = gr.Examples(examples=example_images, inputs=image)
|
70 |
|
71 |
+
# Register all event listeners
|
72 |
model.change(fn=select_model, inputs=model, outputs=selected)
|
73 |
model.change(fn=update_matrix, outputs=matrix)
|
74 |
model.change(fn=update_losses, outputs=losses)
|
75 |
+
btnClassify.click(fn=classify_image, inputs=image, outputs=result)
|
76 |
+
btnClear.click(fn=lambda: gr.Image.update(value=None), inputs=None, outputs=None)
|
77 |
|
78 |
demo.launch(debug=True, inline=False)
|
79 |
# intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=example_images, title=title, description=description )
|