Spaces:
Running
Running
import gradio as gr | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
import nbformat as nbf | |
from huggingface_hub import HfApi | |
import logging | |
from utils.notebook_utils import ( | |
replace_wildcards, | |
load_json_files_from_folder, | |
) | |
from utils.api_utils import get_compatible_libraries, get_first_rows, get_splits | |
from dotenv import load_dotenv | |
import os | |
from nbconvert import HTMLExporter | |
import uuid | |
import pandas as pd | |
load_dotenv() | |
URL = "https://huggingface.co/spaces/asoria/auto-notebook-creator" | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables" | |
NOTEBOOKS_REPOSITORY = os.getenv("NOTEBOOKS_REPOSITORY") | |
assert ( | |
NOTEBOOKS_REPOSITORY is not None | |
), "You need to set NOTEBOOKS_REPOSITORY in your environment variables" | |
logging.basicConfig(level=logging.INFO) | |
# TODO: Validate notebook templates format | |
folder_path = "notebooks" | |
notebook_templates = load_json_files_from_folder(folder_path) | |
logging.info(f"Available notebooks {notebook_templates.keys()}") | |
def create_notebook_file(cells, notebook_name): | |
nb = nbf.v4.new_notebook() | |
nb["cells"] = [ | |
nbf.v4.new_code_cell( | |
cmd["source"] | |
if isinstance(cmd["source"], str) | |
else "\n".join(cmd["source"]) | |
) | |
if cmd["cell_type"] == "code" | |
else nbf.v4.new_markdown_cell(cmd["source"]) | |
for cmd in cells | |
] | |
with open(notebook_name, "w") as f: | |
nbf.write(nb, f) | |
logging.info(f"Notebook {notebook_name} created successfully") | |
html_exporter = HTMLExporter() | |
html_data, _ = html_exporter.from_notebook_node(nb) | |
return html_data | |
def longest_string_column(df): | |
longest_col = None | |
max_length = 0 | |
for col in df.select_dtypes(include=["object", "string"]): | |
max_col_length = df[col].str.len().max() | |
if max_col_length > max_length: | |
max_length = max_col_length | |
longest_col = col | |
return longest_col | |
def _push_to_hub( | |
dataset_id, | |
notebook_file, | |
): | |
logging.info(f"Pushing notebook to hub: {dataset_id} on file {notebook_file}") | |
notebook_name = notebook_file.split("/")[-1] | |
api = HfApi(token=HF_TOKEN) | |
try: | |
logging.info(f"About to push {notebook_file} - {dataset_id}") | |
api.upload_file( | |
path_or_fileobj=notebook_file, | |
path_in_repo=notebook_name, | |
repo_id=NOTEBOOKS_REPOSITORY, | |
repo_type="dataset", | |
) | |
except Exception as e: | |
logging.info("Failed to push notebook", e) | |
raise | |
def generate_cells(dataset_id, notebook_title): | |
logging.info(f"Generating {notebook_title} notebook for dataset {dataset_id}") | |
cells = notebook_templates[notebook_title]["notebook_template"] | |
notebook_type = notebook_templates[notebook_title]["notebook_type"] | |
dataset_types = notebook_templates[notebook_title]["dataset_types"] | |
compatible_library = notebook_templates[notebook_title]["compatible_library"] | |
try: | |
libraries = get_compatible_libraries(dataset_id) | |
if not libraries: | |
logging.error( | |
f"Dataset not compatible with any loading library (pandas/datasets)" | |
) | |
return ( | |
"", | |
"## β This dataset is not compatible with pandas or datasets libraries β", | |
) | |
library_code = next( | |
( | |
lib | |
for lib in libraries.get("libraries", []) | |
if lib["library"] == compatible_library | |
), | |
None, | |
) | |
if not library_code: | |
logging.error(f"Dataset not compatible with {compatible_library} library") | |
return ( | |
"", | |
f"## β This dataset is not compatible with '{compatible_library}' library β", | |
) | |
first_config_loading_code = library_code["loading_codes"][0] | |
first_code = first_config_loading_code["code"] | |
first_config = first_config_loading_code["config_name"] | |
first_split = get_splits(dataset_id, first_config)[0]["split"] | |
first_rows = get_first_rows(dataset_id, first_config, first_split) | |
except Exception as err: | |
gr.Error("Unable to retrieve dataset info from HF Hub.") | |
logging.error(f"Failed to fetch compatible libraries: {err}") | |
return "", f"## β This dataset is not accessible from the Hub {err}β" | |
df = pd.DataFrame.from_dict(first_rows).sample(frac=1).head(3) | |
longest_col = longest_string_column(df) | |
html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>" | |
wildcards = [ | |
"{dataset_name}", | |
"{first_code}", | |
"{html_code}", | |
"{longest_col}", | |
"{first_config}", | |
"{first_split}", | |
] | |
replacements = [ | |
dataset_id, | |
first_code, | |
html_code, | |
longest_col, | |
first_config, | |
first_split, | |
] | |
has_numeric_columns = len(df.select_dtypes(include=["number"]).columns) > 0 | |
has_categoric_columns = len(df.select_dtypes(include=["object"]).columns) > 0 | |
valid_dataset = False | |
if "text" in dataset_types and has_categoric_columns: | |
valid_dataset = True | |
if "numeric" in dataset_types and has_numeric_columns: | |
valid_dataset = True | |
if not valid_dataset: | |
logging.error( | |
f"Dataset does not have the column types needed for this notebook which expects to have {dataset_types} data types." | |
) | |
return ( | |
"", | |
f"## β This dataset does not have {dataset_types} columns, which are required for this notebook type β", | |
) | |
cells = replace_wildcards( | |
cells, wildcards, replacements, has_numeric_columns, has_categoric_columns | |
) | |
notebook_name = ( | |
f"{dataset_id.replace('/', '-')}-{notebook_type}-{uuid.uuid4()}.ipynb" | |
) | |
html_content = create_notebook_file(cells, notebook_name=notebook_name) | |
_push_to_hub(dataset_id, notebook_name) | |
notebook_link = f"https://colab.research.google.com/#fileId=https%3A//huggingface.co/datasets/{NOTEBOOKS_REPOSITORY}/blob/main/{notebook_name}" | |
return ( | |
html_content, | |
f"[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)]({notebook_link})", | |
) | |
css = """ | |
.prose :where(pre):not(:where([class~=not-prose],[class~=not-prose] *)) { | |
background-color: var(--table-even-background-fill); /* Fix dark mode */ | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# π€ Dataset notebook creator π΅οΈ") | |
gr.Markdown( | |
f"[![Notebooks: {len(notebook_templates)}](https://img.shields.io/badge/Notebooks-{len(notebook_templates)}-blue.svg)]({URL}/tree/main/notebooks)" | |
) | |
gr.Markdown( | |
f"[![Contribute a Notebook](https://img.shields.io/badge/Contribute%20a%20Notebook-8A2BE2)]({URL}/blob/main/CONTRIBUTING.md)" | |
) | |
text_input = gr.Textbox(label="Suggested notebook type", visible=False) | |
gr.Markdown("## 1. Select and preview a dataset from Huggingface Hub") | |
dataset_name = HuggingfaceHubSearch( | |
label="Hub Dataset ID", | |
placeholder="Search for dataset id on Huggingface", | |
search_type="dataset", | |
value="", | |
) | |
dataset_samples = gr.Examples( | |
examples=[ | |
[ | |
"scikit-learn/iris", | |
"Try this dataset for Exploratory Data Analysis", | |
], | |
[ | |
"infinite-dataset-hub/GlobaleCuisineRecipes", | |
"Try this dataset for Embeddings generation", | |
], | |
[ | |
"infinite-dataset-hub/GlobalBestSellersSummaries", | |
"Try this dataset for RAG generation", | |
], | |
], | |
inputs=[dataset_name, text_input], | |
cache_examples=False, | |
) | |
def embed(name): | |
if not name: | |
return gr.Markdown("### No dataset provided") | |
html_code = f""" | |
<iframe | |
src="https://huggingface.co/datasets/{name}/embed/viewer/default/train" | |
frameborder="0" | |
width="100%" | |
height="350px" | |
></iframe> | |
""" | |
return gr.HTML(value=html_code, elem_classes="viewer") | |
gr.Markdown("## 2. Select the type of notebook you want to generate") | |
notebook_type = gr.Dropdown( | |
choices=notebook_templates.keys(), | |
label="Notebook type", | |
value="Text Embeddings", | |
) | |
generate_button = gr.Button("Generate Notebook", variant="primary") | |
gr.Markdown("## 3. Notebook result + Open in Colab") | |
go_to_notebook = gr.Markdown() | |
code_component = gr.HTML() | |
generate_button.click( | |
generate_cells, | |
inputs=[dataset_name, notebook_type], | |
outputs=[code_component, go_to_notebook], | |
) | |
gr.Markdown( | |
"π§ Note: Some code may not be compatible with datasets that contain binary data or complex structures. π§" | |
) | |
demo.launch() | |