asoria's picture
asoria HF staff
Adding unique id to notebook name to follow up how many notebooks will be generated
1c042c7
raw
history blame
9.55 kB
import gradio as gr
from gradio_huggingfacehub_search import HuggingfaceHubSearch
import nbformat as nbf
from huggingface_hub import HfApi
from httpx import Client
import logging
import pandas as pd
from utils.notebook_utils import (
replace_wildcards,
load_json_files_from_folder,
)
from dotenv import load_dotenv
import os
from nbconvert import HTMLExporter
import uuid
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
NOTEBOOKS_REPOSITORY = os.getenv("NOTEBOOKS_REPOSITORY")
assert (
NOTEBOOKS_REPOSITORY is not None
), "You need to set NOTEBOOKS_REPOSITORY in your environment variables"
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
HEADERS = {"Accept": "application/json", "Content-Type": "application/json"}
client = Client(headers=HEADERS)
logging.basicConfig(level=logging.INFO)
def get_compatible_libraries(dataset: str):
try:
response = client.get(
f"{BASE_DATASETS_SERVER_URL}/compatible-libraries?dataset={dataset}"
)
response.raise_for_status()
return response.json()
except Exception as e:
logging.error(f"Error fetching compatible libraries: {e}")
raise
def create_notebook_file(cells, notebook_name):
nb = nbf.v4.new_notebook()
nb["cells"] = [
nbf.v4.new_code_cell(
cmd["source"]
if isinstance(cmd["source"], str)
else "\n".join(cmd["source"])
)
if cmd["cell_type"] == "code"
else nbf.v4.new_markdown_cell(cmd["source"])
for cmd in cells
]
with open(notebook_name, "w") as f:
nbf.write(nb, f)
logging.info(f"Notebook {notebook_name} created successfully")
html_exporter = HTMLExporter()
html_data, _ = html_exporter.from_notebook_node(nb)
return html_data
def get_first_rows_as_df(dataset: str, config: str, split: str, limit: int):
try:
resp = client.get(
f"{BASE_DATASETS_SERVER_URL}/first-rows?dataset={dataset}&config={config}&split={split}"
)
resp.raise_for_status()
content = resp.json()
rows = content["rows"]
rows = [row["row"] for row in rows]
first_rows_df = pd.DataFrame.from_dict(rows).sample(frac=1).head(limit)
return first_rows_df
except Exception as e:
logging.error(f"Error fetching first rows: {e}")
raise
def longest_string_column(df):
longest_col = None
max_length = 0
for col in df.select_dtypes(include=["object", "string"]):
max_col_length = df[col].str.len().max()
if max_col_length > max_length:
max_length = max_col_length
longest_col = col
return longest_col
def _push_to_hub(
dataset_id,
notebook_file,
):
logging.info(f"Pushing notebook to hub: {dataset_id} on file {notebook_file}")
notebook_name = notebook_file.split("/")[-1]
api = HfApi(token=HF_TOKEN)
try:
logging.info(f"About to push {notebook_file} - {dataset_id}")
api.upload_file(
path_or_fileobj=notebook_file,
path_in_repo=notebook_name,
repo_id=NOTEBOOKS_REPOSITORY,
repo_type="dataset",
)
except Exception as e:
logging.info("Failed to push notebook", e)
raise
folder_path = "notebooks"
notebook_templates = load_json_files_from_folder(folder_path)
logging.info(f"Available notebooks {notebook_templates.keys()}")
def generate_cells(dataset_id, notebook_title):
logging.info(f"Generating {notebook_title} notebook for dataset {dataset_id}")
cells = notebook_templates[notebook_title]["notebook_template"]
notebook_type = notebook_templates[notebook_title]["notebook_type"]
try:
libraries = get_compatible_libraries(dataset_id)
except Exception as err:
gr.Error("Unable to retrieve dataset info from HF Hub.")
logging.error(f"Failed to fetch compatible libraries: {err}")
return "", "## ❌ This dataset is not accessible from the Hub ❌"
if not libraries:
logging.error(f"Dataset not compatible with pandas library - not libraries")
return "", "## ❌ This dataset is not compatible with pandas library ❌"
pandas_library = next(
(lib for lib in libraries.get("libraries", []) if lib["library"] == "pandas"),
None,
)
if not pandas_library:
logging.error("Dataset not compatible with pandas library - not pandas library")
return "", "## ❌ This dataset is not compatible with pandas library ❌"
first_config_loading_code = pandas_library["loading_codes"][0]
first_code = first_config_loading_code["code"]
first_config = first_config_loading_code["config_name"]
first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)
longest_col = longest_string_column(df)
html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
wildcards = ["{dataset_name}", "{first_code}", "{html_code}", "{longest_col}"]
replacements = [dataset_id, first_code, html_code, longest_col]
has_numeric_columns = len(df.select_dtypes(include=["number"]).columns) > 0
has_categoric_columns = len(df.select_dtypes(include=["object"]).columns) > 0
# TODO: Validate by notebook type
if notebook_type in ("rag", "embeddings") and not has_categoric_columns:
logging.error(
"Dataset does not have categorical columns, which are required for RAG generation."
)
return (
"",
"## ❌ This dataset does not have categorical columns, which are required for Embeddings/RAG generation ❌",
)
if notebook_type == "eda" and not (has_categoric_columns or has_numeric_columns):
logging.error(
"Dataset does not have categorical or numeric columns, which are required for EDA generation."
)
return (
"",
"## ❌ This dataset does not have categorical or numeric columns, which are required for EDA generation ❌",
)
cells = replace_wildcards(
cells, wildcards, replacements, has_numeric_columns, has_categoric_columns
)
notebook_name = (
f"{dataset_id.replace('/', '-')}-{notebook_type}-{uuid.uuid4()}.ipynb"
)
html_content = create_notebook_file(cells, notebook_name=notebook_name)
_push_to_hub(dataset_id, notebook_name)
notebook_link = f"https://colab.research.google.com/#fileId=https%3A//huggingface.co/datasets/asoria/dataset-notebook-creator-content/blob/main/{notebook_name}"
return (
html_content,
f"## πŸŽ‰ Ready to explore? Play and run the generated notebook πŸ‘‰ [here]({notebook_link})!",
)
css = """
#box {
height: 650px;
overflow-y: scroll !important;
}
"""
with gr.Blocks(
fill_height=True,
fill_width=True,
css=css,
) as demo:
gr.Markdown("# πŸ€– Dataset notebook creator πŸ•΅οΈ")
text_input = gr.Textbox(label="Suggested notebook type", visible=False)
gr.Markdown("## 1. Select and preview a dataset from Huggingface Hub")
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
value="",
)
dataset_samples = gr.Examples(
examples=[
[
"scikit-learn/iris",
"Try this dataset for Exploratory Data Analysis",
],
[
"infinite-dataset-hub/GlobaleCuisineRecipes",
"Try this dataset for Embeddings generation",
],
[
"infinite-dataset-hub/GlobalBestSellersSummaries",
"Try this dataset for RAG generation",
],
],
inputs=[dataset_name, text_input],
cache_examples=False,
)
@gr.render(inputs=dataset_name)
def embed(name):
if not name:
return gr.Markdown("### No dataset provided")
html_code = f"""
<iframe
src="https://huggingface.co/datasets/{name}/embed/viewer/default/train"
frameborder="0"
width="100%"
height="350px"
></iframe>
"""
return gr.HTML(value=html_code, elem_classes="viewer")
gr.Markdown("## 2. Select the type of notebook you want to generate")
with gr.Row():
notebook_type = gr.Dropdown(
choices=notebook_templates.keys(), label="Notebook type"
)
generate_button = gr.Button("Generate Notebook", variant="primary")
contribute_btn = gr.Button(
"Or Contribute",
visible=True,
variant="secondary",
size="sm",
link="https://huggingface.co/spaces/asoria/auto-notebook-creator/blob/main/CONTRIBUTING.md",
)
gr.Markdown("## 3. Notebook code result")
code_component = gr.HTML(elem_id="box")
go_to_notebook = gr.Markdown("", visible=True)
generate_button.click(
generate_cells,
inputs=[dataset_name, notebook_type],
outputs=[code_component, go_to_notebook],
)
gr.Markdown(
"🚧 Note: Some code may not be compatible with datasets that contain binary data or complex structures. 🚧"
)
demo.launch()