Spaces:
Running
Running
File size: 9,551 Bytes
93c417c fb1a11c 93c417c 90bcf2d 1c042c7 93c417c fb1a11c 93c417c 90bcf2d 93c417c 7f6f34c 93c417c aa1bdb0 93c417c fb1a11c 93c417c 90bcf2d 93c417c 7f6f34c 90bcf2d 93c417c 7f6f34c 90bcf2d 93c417c 7f6f34c 93c417c aa1bdb0 93c417c aa1bdb0 939f6ae 7f6f34c fb1a11c 7f6f34c 90bcf2d 7f6f34c 90bcf2d 7f6f34c 939f6ae 90bcf2d 1c042c7 90bcf2d 4dc6cd8 90bcf2d 7f6f34c 93c417c d97974e 90bcf2d d97974e 90bcf2d 93c417c ab6348d d97974e ab6348d fb1a11c ab6348d 93c417c fb1a11c 93c417c aa1bdb0 93c417c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gradio as gr
from gradio_huggingfacehub_search import HuggingfaceHubSearch
import nbformat as nbf
from huggingface_hub import HfApi
from httpx import Client
import logging
import pandas as pd
from utils.notebook_utils import (
replace_wildcards,
load_json_files_from_folder,
)
from dotenv import load_dotenv
import os
from nbconvert import HTMLExporter
import uuid
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
NOTEBOOKS_REPOSITORY = os.getenv("NOTEBOOKS_REPOSITORY")
assert (
NOTEBOOKS_REPOSITORY is not None
), "You need to set NOTEBOOKS_REPOSITORY in your environment variables"
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
HEADERS = {"Accept": "application/json", "Content-Type": "application/json"}
client = Client(headers=HEADERS)
logging.basicConfig(level=logging.INFO)
def get_compatible_libraries(dataset: str):
try:
response = client.get(
f"{BASE_DATASETS_SERVER_URL}/compatible-libraries?dataset={dataset}"
)
response.raise_for_status()
return response.json()
except Exception as e:
logging.error(f"Error fetching compatible libraries: {e}")
raise
def create_notebook_file(cells, notebook_name):
nb = nbf.v4.new_notebook()
nb["cells"] = [
nbf.v4.new_code_cell(
cmd["source"]
if isinstance(cmd["source"], str)
else "\n".join(cmd["source"])
)
if cmd["cell_type"] == "code"
else nbf.v4.new_markdown_cell(cmd["source"])
for cmd in cells
]
with open(notebook_name, "w") as f:
nbf.write(nb, f)
logging.info(f"Notebook {notebook_name} created successfully")
html_exporter = HTMLExporter()
html_data, _ = html_exporter.from_notebook_node(nb)
return html_data
def get_first_rows_as_df(dataset: str, config: str, split: str, limit: int):
try:
resp = client.get(
f"{BASE_DATASETS_SERVER_URL}/first-rows?dataset={dataset}&config={config}&split={split}"
)
resp.raise_for_status()
content = resp.json()
rows = content["rows"]
rows = [row["row"] for row in rows]
first_rows_df = pd.DataFrame.from_dict(rows).sample(frac=1).head(limit)
return first_rows_df
except Exception as e:
logging.error(f"Error fetching first rows: {e}")
raise
def longest_string_column(df):
longest_col = None
max_length = 0
for col in df.select_dtypes(include=["object", "string"]):
max_col_length = df[col].str.len().max()
if max_col_length > max_length:
max_length = max_col_length
longest_col = col
return longest_col
def _push_to_hub(
dataset_id,
notebook_file,
):
logging.info(f"Pushing notebook to hub: {dataset_id} on file {notebook_file}")
notebook_name = notebook_file.split("/")[-1]
api = HfApi(token=HF_TOKEN)
try:
logging.info(f"About to push {notebook_file} - {dataset_id}")
api.upload_file(
path_or_fileobj=notebook_file,
path_in_repo=notebook_name,
repo_id=NOTEBOOKS_REPOSITORY,
repo_type="dataset",
)
except Exception as e:
logging.info("Failed to push notebook", e)
raise
folder_path = "notebooks"
notebook_templates = load_json_files_from_folder(folder_path)
logging.info(f"Available notebooks {notebook_templates.keys()}")
def generate_cells(dataset_id, notebook_title):
logging.info(f"Generating {notebook_title} notebook for dataset {dataset_id}")
cells = notebook_templates[notebook_title]["notebook_template"]
notebook_type = notebook_templates[notebook_title]["notebook_type"]
try:
libraries = get_compatible_libraries(dataset_id)
except Exception as err:
gr.Error("Unable to retrieve dataset info from HF Hub.")
logging.error(f"Failed to fetch compatible libraries: {err}")
return "", "## β This dataset is not accessible from the Hub β"
if not libraries:
logging.error(f"Dataset not compatible with pandas library - not libraries")
return "", "## β This dataset is not compatible with pandas library β"
pandas_library = next(
(lib for lib in libraries.get("libraries", []) if lib["library"] == "pandas"),
None,
)
if not pandas_library:
logging.error("Dataset not compatible with pandas library - not pandas library")
return "", "## β This dataset is not compatible with pandas library β"
first_config_loading_code = pandas_library["loading_codes"][0]
first_code = first_config_loading_code["code"]
first_config = first_config_loading_code["config_name"]
first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)
longest_col = longest_string_column(df)
html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
wildcards = ["{dataset_name}", "{first_code}", "{html_code}", "{longest_col}"]
replacements = [dataset_id, first_code, html_code, longest_col]
has_numeric_columns = len(df.select_dtypes(include=["number"]).columns) > 0
has_categoric_columns = len(df.select_dtypes(include=["object"]).columns) > 0
# TODO: Validate by notebook type
if notebook_type in ("rag", "embeddings") and not has_categoric_columns:
logging.error(
"Dataset does not have categorical columns, which are required for RAG generation."
)
return (
"",
"## β This dataset does not have categorical columns, which are required for Embeddings/RAG generation β",
)
if notebook_type == "eda" and not (has_categoric_columns or has_numeric_columns):
logging.error(
"Dataset does not have categorical or numeric columns, which are required for EDA generation."
)
return (
"",
"## β This dataset does not have categorical or numeric columns, which are required for EDA generation β",
)
cells = replace_wildcards(
cells, wildcards, replacements, has_numeric_columns, has_categoric_columns
)
notebook_name = (
f"{dataset_id.replace('/', '-')}-{notebook_type}-{uuid.uuid4()}.ipynb"
)
html_content = create_notebook_file(cells, notebook_name=notebook_name)
_push_to_hub(dataset_id, notebook_name)
notebook_link = f"https://colab.research.google.com/#fileId=https%3A//huggingface.co/datasets/asoria/dataset-notebook-creator-content/blob/main/{notebook_name}"
return (
html_content,
f"## π Ready to explore? Play and run the generated notebook π [here]({notebook_link})!",
)
css = """
#box {
height: 650px;
overflow-y: scroll !important;
}
"""
with gr.Blocks(
fill_height=True,
fill_width=True,
css=css,
) as demo:
gr.Markdown("# π€ Dataset notebook creator π΅οΈ")
text_input = gr.Textbox(label="Suggested notebook type", visible=False)
gr.Markdown("## 1. Select and preview a dataset from Huggingface Hub")
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
value="",
)
dataset_samples = gr.Examples(
examples=[
[
"scikit-learn/iris",
"Try this dataset for Exploratory Data Analysis",
],
[
"infinite-dataset-hub/GlobaleCuisineRecipes",
"Try this dataset for Embeddings generation",
],
[
"infinite-dataset-hub/GlobalBestSellersSummaries",
"Try this dataset for RAG generation",
],
],
inputs=[dataset_name, text_input],
cache_examples=False,
)
@gr.render(inputs=dataset_name)
def embed(name):
if not name:
return gr.Markdown("### No dataset provided")
html_code = f"""
<iframe
src="https://huggingface.co/datasets/{name}/embed/viewer/default/train"
frameborder="0"
width="100%"
height="350px"
></iframe>
"""
return gr.HTML(value=html_code, elem_classes="viewer")
gr.Markdown("## 2. Select the type of notebook you want to generate")
with gr.Row():
notebook_type = gr.Dropdown(
choices=notebook_templates.keys(), label="Notebook type"
)
generate_button = gr.Button("Generate Notebook", variant="primary")
contribute_btn = gr.Button(
"Or Contribute",
visible=True,
variant="secondary",
size="sm",
link="https://huggingface.co/spaces/asoria/auto-notebook-creator/blob/main/CONTRIBUTING.md",
)
gr.Markdown("## 3. Notebook code result")
code_component = gr.HTML(elem_id="box")
go_to_notebook = gr.Markdown("", visible=True)
generate_button.click(
generate_cells,
inputs=[dataset_name, notebook_type],
outputs=[code_component, go_to_notebook],
)
gr.Markdown(
"π§ Note: Some code may not be compatible with datasets that contain binary data or complex structures. π§"
)
demo.launch()
|