asoria's picture
asoria HF staff
Adding contribute tutorial
fb1a11c
raw
history blame
2.95 kB
{
"notebook_title": "Text Embeddings",
"notebook_type": "embeddings",
"dataset_type": "text",
"notebook_template": [
{
"cell_type": "markdown",
"source": "---\n# **Embeddings Notebook for {dataset_name} dataset**\n---"
},
{
"cell_type": "markdown",
"source": "## 1. Setup necessary libraries and load the dataset"
},
{
"cell_type": "code",
"source": "# Install and import necessary libraries.\n!pip install pandas sentence-transformers faiss-cpu "
},
{
"cell_type": "code",
"source": "from sentence_transformers import SentenceTransformer\nimport faiss"
},
{
"cell_type": "code",
"source": "# Load the dataset as a DataFrame\n{first_code}"
},
{
"cell_type": "code",
"source": "# Specify the column name that contains the text data to generate embeddings\ncolumn_to_generate_embeddings = '{longest_col}'"
},
{
"cell_type": "markdown",
"source": "## 2. Loading embedding model and creating FAISS index"
},
{
"cell_type": "code",
"source": "# Remove duplicate entries based on the specified column\ndf = df.drop_duplicates(subset=column_to_generate_embeddings)"
},
{
"cell_type": "code",
"source": "# Convert the column data to a list of text entries\ntext_list = df[column_to_generate_embeddings].tolist()"
},
{
"cell_type": "code",
"source": "# Specify the embedding model you want to use\nmodel = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')"
},
{
"cell_type": "code",
"source": "vectors = model.encode(text_list)\nvector_dimension = vectors.shape[1]\n\n# Initialize the FAISS index with the appropriate dimension (384 for this model)\nindex = faiss.IndexFlatL2(vector_dimension)\n\n# Encode the text list into embeddings and add them to the FAISS index\nindex.add(vectors)"
},
{
"cell_type": "markdown",
"source": "## 3. Perform a text search"
},
{
"cell_type": "code",
"source": "# Specify the text you want to search for in the list\ntext_to_search = text_list[0]\nprint(f\"Text to search: {text_to_search}\")"
},
{
"cell_type": "code",
"source": "# Generate the embedding for the search query\nquery_embedding = model.encode([text_to_search])"
},
{
"cell_type": "code",
"source": "# Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)\nD, I = index.search(query_embedding, k=10)\n\n# Print the similar documents\nprint(f\"Similar documents: {[text_list[i] for i in I[0]]}\")"
}
]
}