File size: 10,212 Bytes
93c417c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f6f34c
 
aa1bdb0
93c417c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f6f34c
93c417c
 
 
 
 
aa1bdb0
 
 
 
 
 
 
 
 
 
 
 
 
7f6f34c
 
 
 
 
 
 
 
93c417c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f6f34c
93c417c
 
 
 
 
 
 
 
7f6f34c
 
 
93c417c
 
 
 
 
7f6f34c
 
 
93c417c
 
 
 
7f6f34c
93c417c
aa1bdb0
93c417c
aa1bdb0
 
939f6ae
 
7f6f34c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
939f6ae
 
 
93c417c
117da13
93c417c
7f6f34c
 
 
93c417c
117da13
93c417c
7f6f34c
93c417c
 
 
 
 
4dc6cd8
 
7f6f34c
 
 
 
93c417c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dc6cd8
93c417c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa1bdb0
 
 
 
93c417c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import gradio as gr
from gradio_huggingfacehub_search import HuggingfaceHubSearch
import nbformat as nbf
from huggingface_hub import HfApi
from httpx import Client
import logging
import pandas as pd
from utils.notebook_utils import (
    eda_cells,
    replace_wildcards,
    rag_cells,
    embeggins_cells,
)
from dotenv import load_dotenv
import os

# TODOs:
# Improve UI code preview
# Add template for training

load_dotenv()

HF_TOKEN = os.getenv("HF_TOKEN")
NOTEBOOKS_REPOSITORY = os.getenv("NOTEBOOKS_REPOSITORY")
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
assert (
    NOTEBOOKS_REPOSITORY is not None
), "You need to set NOTEBOOKS_REPOSITORY in your environment variables"


BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
HEADERS = {"Accept": "application/json", "Content-Type": "application/json"}

client = Client(headers=HEADERS)

logging.basicConfig(level=logging.INFO)


def get_compatible_libraries(dataset: str):
    try:
        response = client.get(
            f"{BASE_DATASETS_SERVER_URL}/compatible-libraries?dataset={dataset}"
        )
        response.raise_for_status()
        return response.json()
    except Exception as e:
        logging.error(f"Error fetching compatible libraries: {e}")
        raise


def create_notebook_file(cells, notebook_name):
    nb = nbf.v4.new_notebook()
    nb["cells"] = [
        nbf.v4.new_code_cell(
            cmd["source"]
            if isinstance(cmd["source"], str)
            else "\n".join(cmd["source"])
        )
        if cmd["cell_type"] == "code"
        else nbf.v4.new_markdown_cell(cmd["source"])
        for cmd in cells
    ]

    with open(notebook_name, "w") as f:
        nbf.write(nb, f)
    logging.info(f"Notebook {notebook_name} created successfully")


def get_first_rows_as_df(dataset: str, config: str, split: str, limit: int):
    try:
        resp = client.get(
            f"{BASE_DATASETS_SERVER_URL}/first-rows?dataset={dataset}&config={config}&split={split}"
        )
        resp.raise_for_status()
        content = resp.json()
        rows = content["rows"]
        rows = [row["row"] for row in rows]
        first_rows_df = pd.DataFrame.from_dict(rows).sample(frac=1).head(limit)
        return first_rows_df
    except Exception as e:
        logging.error(f"Error fetching first rows: {e}")
        raise


def longest_string_column(df):
    longest_col = None
    max_length = 0

    for col in df.select_dtypes(include=["object", "string"]):
        max_col_length = df[col].str.len().max()
        if max_col_length > max_length:
            max_length = max_col_length
            longest_col = col

    return longest_col


def generate_eda_cells(dataset_id):
    yield from generate_cells(dataset_id, eda_cells, "eda")


def generate_rag_cells(dataset_id):
    yield from generate_cells(dataset_id, rag_cells, "rag")


def generate_embedding_cells(dataset_id):
    yield from generate_cells(dataset_id, embeggins_cells, "embeddings")


def _push_to_hub(
    dataset_id,
    notebook_file,
):
    logging.info(f"Pushing notebook to hub: {dataset_id} on file {notebook_file}")

    notebook_name = notebook_file.split("/")[-1]
    api = HfApi(token=HF_TOKEN)
    try:
        logging.info(f"About to push {notebook_file} - {dataset_id}")
        api.upload_file(
            path_or_fileobj=notebook_file,
            path_in_repo=notebook_name,
            repo_id=NOTEBOOKS_REPOSITORY,
            repo_type="dataset",
        )
    except Exception as e:
        logging.info("Failed to push notebook", e)
        raise


def generate_cells(dataset_id, cells, notebook_type="eda"):
    logging.info(f"Generating notebook for dataset {dataset_id}")
    try:
        libraries = get_compatible_libraries(dataset_id)
    except Exception as err:
        gr.Error("Unable to retrieve dataset info from HF Hub.")
        logging.error(f"Failed to fetch compatible libraries: {err}")
        return []

    if not libraries:
        logging.error(f"Dataset not compatible with pandas library - not libraries")
        yield "", "## ❌ This dataset is not compatible with pandas library ❌"
        return
    pandas_library = next(
        (lib for lib in libraries.get("libraries", []) if lib["library"] == "pandas"),
        None,
    )
    if not pandas_library:
        logging.error("Dataset not compatible with pandas library - not pandas library")
        yield "", "## ❌ This dataset is not compatible with pandas library ❌"
        return
    first_config_loading_code = pandas_library["loading_codes"][0]
    first_code = first_config_loading_code["code"]
    first_config = first_config_loading_code["config_name"]
    first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
    df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)

    longest_col = longest_string_column(df)
    html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
    wildcards = ["{dataset_name}", "{first_code}", "{html_code}", "{longest_col}"]
    replacements = [dataset_id, first_code, html_code, longest_col]
    has_numeric_columns = len(df.select_dtypes(include=["number"]).columns) > 0
    has_categoric_columns = len(df.select_dtypes(include=["object"]).columns) > 0

    if notebook_type in ("rag", "embeddings") and not has_categoric_columns:
        logging.error(
            "Dataset does not have categorical columns, which are required for RAG generation."
        )
        yield (
            "",
            "## ❌ This dataset does not have categorical columns, which are required for Embeddings/RAG generation ❌",
        )
        return
    if notebook_type == "eda" and not (has_categoric_columns or has_numeric_columns):
        logging.error(
            "Dataset does not have categorical or numeric columns, which are required for EDA generation."
        )
        yield (
            "",
            "## ❌ This dataset does not have categorical or numeric columns, which are required for EDA generation ❌",
        )
        return

    cells = replace_wildcards(
        cells, wildcards, replacements, has_numeric_columns, has_categoric_columns
    )
    generated_text = ""
    # Show only the first 30 lines, would like to have a scroll in gr.Code https://github.com/gradio-app/gradio/issues/9192
    for cell in cells:
        if cell["cell_type"] == "markdown":
            continue
        generated_text += cell["source"] + "\n\n"
        yield generated_text, ""
        if generated_text.count("\n") > 30:
            generated_text += (
                f"## See more lines available in the generated notebook πŸ€— ......"
            )
            yield generated_text, ""
            break
    notebook_name = f"{dataset_id.replace('/', '-')}-{notebook_type}.ipynb"
    create_notebook_file(cells, notebook_name=notebook_name)
    _push_to_hub(dataset_id, notebook_name)
    notebook_link = f"https://colab.research.google.com/#fileId=https%3A//huggingface.co/datasets/asoria/dataset-notebook-creator-content/blob/main/{notebook_name}"
    yield (
        generated_text,
        f"## βœ… Here you have the [generated notebook]({notebook_link}) βœ…",
    )


with gr.Blocks(fill_height=True, fill_width=True) as demo:
    gr.Markdown("# πŸ€– Dataset notebook creator πŸ•΅οΈ")
    with gr.Row(equal_height=True):
        with gr.Column(scale=2):
            text_input = gr.Textbox(label="Suggested notebook type", visible=False)

            dataset_name = HuggingfaceHubSearch(
                label="Hub Dataset ID",
                placeholder="Search for dataset id on Huggingface",
                search_type="dataset",
                value="",
            )

            dataset_samples = gr.Examples(
                examples=[
                    [
                        "scikit-learn/iris",
                        "Try this dataset for Exploratory Data Analysis",
                    ],
                    [
                        "infinite-dataset-hub/GlobaleCuisineRecipes",
                        "Try this dataset for Embeddings generation",
                    ],
                    [
                        "infinite-dataset-hub/GlobalBestSellersSummaries",
                        "Try this dataset for RAG generation",
                    ],
                ],
                inputs=[dataset_name, text_input],
                cache_examples=False,
            )

            @gr.render(inputs=dataset_name)
            def embed(name):
                if not name:
                    return gr.Markdown("### No dataset provided")
                html_code = f"""
                <iframe
                src="https://huggingface.co/datasets/{name}/embed/viewer/default/train"
                frameborder="0"
                width="100%"
                height="350px"
                ></iframe>
                """
                return gr.HTML(value=html_code, elem_classes="viewer")

            with gr.Row():
                generate_eda_btn = gr.Button("Exploratory Data Analysis")
                generate_embedding_btn = gr.Button("Embeddings")
                generate_rag_btn = gr.Button("RAG")
                generate_training_btn = gr.Button(
                    "Training - Coming soon", interactive=False
                )

        with gr.Column(scale=2):
            code_component = gr.Code(
                language="python", label="Notebook Code Preview", lines=40
            )
            go_to_notebook = gr.Markdown("", visible=True)

    generate_eda_btn.click(
        generate_eda_cells,
        inputs=[dataset_name],
        outputs=[code_component, go_to_notebook],
    )

    generate_embedding_btn.click(
        generate_embedding_cells,
        inputs=[dataset_name],
        outputs=[code_component, go_to_notebook],
    )

    generate_rag_btn.click(
        generate_rag_cells,
        inputs=[dataset_name],
        outputs=[code_component, go_to_notebook],
    )

    gr.Markdown(
        "🚧 Note: Some code may not be compatible with datasets that contain binary data or complex structures. 🚧"
    )

demo.launch()