Update app.py
Browse files
app.py
CHANGED
@@ -30,8 +30,8 @@ def Text_to_Music(input_title, input_num_tokens, input_prompt_type):
|
|
30 |
|
31 |
print('Loading model...')
|
32 |
|
33 |
-
SEQ_LEN =
|
34 |
-
PAD_IDX =
|
35 |
DEVICE = 'cuda' # 'cuda'
|
36 |
|
37 |
# instantiate the model
|
@@ -39,7 +39,7 @@ def Text_to_Music(input_title, input_num_tokens, input_prompt_type):
|
|
39 |
model = TransformerWrapper(
|
40 |
num_tokens = PAD_IDX+1,
|
41 |
max_seq_len = SEQ_LEN,
|
42 |
-
attn_layers = Decoder(dim = 2048, depth =
|
43 |
)
|
44 |
|
45 |
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
|
@@ -50,7 +50,7 @@ def Text_to_Music(input_title, input_num_tokens, input_prompt_type):
|
|
50 |
print('Loading model checkpoint...')
|
51 |
|
52 |
model.load_state_dict(
|
53 |
-
torch.load('
|
54 |
map_location=DEVICE))
|
55 |
print('=' * 70)
|
56 |
|
@@ -66,253 +66,186 @@ def Text_to_Music(input_title, input_num_tokens, input_prompt_type):
|
|
66 |
print('Done!')
|
67 |
print('=' * 70)
|
68 |
|
69 |
-
|
70 |
-
fn1 = fn.split('.')[0]
|
71 |
-
|
72 |
-
input_num_tokens = max(4, min(128, input_num_tokens))
|
73 |
|
74 |
print('-' * 70)
|
75 |
-
print('Input
|
76 |
print('Req num toks:', input_num_tokens)
|
77 |
-
print('
|
78 |
print('-' * 70)
|
79 |
|
80 |
#===============================================================================
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
#
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
#=======================================================
|
110 |
-
# MAIN PROCESSING CYCLE
|
111 |
-
#=======================================================
|
112 |
-
|
113 |
-
pe = cscore[0][0]
|
114 |
-
|
115 |
-
mpe = melody[0]
|
116 |
-
|
117 |
-
midx = 1
|
118 |
-
|
119 |
-
for i, c in enumerate(cscore):
|
120 |
-
|
121 |
-
c.sort(key=lambda x: (x[3], x[4]), reverse=True)
|
122 |
-
|
123 |
-
# Next melody note
|
124 |
-
|
125 |
-
if midx < len(melody):
|
126 |
-
|
127 |
-
# Time
|
128 |
-
mtime = melody[midx][1]-mpe[1]
|
129 |
-
|
130 |
-
mdur = melody[midx][2]
|
131 |
-
|
132 |
-
mdelta_time = max(0, min(127, mtime))
|
133 |
-
|
134 |
-
# Durations
|
135 |
-
mdur = max(0, min(127, mdur))
|
136 |
-
|
137 |
-
# Pitch
|
138 |
-
mptc = melody[midx][4]
|
139 |
-
|
140 |
-
else:
|
141 |
-
mtime = 127-mpe[1]
|
142 |
-
|
143 |
-
mdur = mpe[2]
|
144 |
-
|
145 |
-
mdelta_time = max(0, min(127, mtime))
|
146 |
-
|
147 |
-
# Durations
|
148 |
-
mdur = max(0, min(127, mdur))
|
149 |
-
|
150 |
-
# Pitch
|
151 |
-
mptc = mpe[4]
|
152 |
-
|
153 |
-
|
154 |
-
e = melody[i]
|
155 |
-
|
156 |
-
#=======================================================
|
157 |
-
# Timings...
|
158 |
-
|
159 |
-
time = e[1]-pe[1]
|
160 |
-
|
161 |
-
dur = e[2]
|
162 |
-
|
163 |
-
delta_time = max(0, min(127, time))
|
164 |
|
165 |
-
|
|
|
166 |
|
167 |
-
|
|
|
|
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
|
|
|
|
|
|
|
172 |
|
173 |
-
|
174 |
-
ptc = 60 + (ptc % 12)
|
175 |
|
176 |
-
|
177 |
|
178 |
-
|
179 |
-
|
180 |
|
181 |
-
|
182 |
-
melody_chords.append([delta_time, dur+128, ptc+384, mdelta_time+512, mptc+640])
|
183 |
-
mpe = melody[midx]
|
184 |
-
midx += 1
|
185 |
-
else:
|
186 |
-
melody_chords.append([delta_time, dur+128, ptc+384, mdelta_time+512, mptc+640])
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
|
192 |
print('=' * 70)
|
193 |
-
|
194 |
-
print('Sample output events', melody_chords[:5])
|
195 |
print('=' * 70)
|
196 |
-
print('Generating...')
|
197 |
-
|
198 |
-
output = []
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
temperature=0.9
|
203 |
-
max_drums_limit=4
|
204 |
-
num_memory_tokens=4096
|
205 |
-
|
206 |
-
output1 = []
|
207 |
-
output2 = []
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
output1.extend(m)
|
213 |
-
|
214 |
-
input_seq = output1
|
215 |
-
|
216 |
-
if force_acc:
|
217 |
-
x = torch.LongTensor([input_seq+[0]]).cuda()
|
218 |
-
else:
|
219 |
-
x = torch.LongTensor([input_seq]).cuda()
|
220 |
|
221 |
-
|
|
|
222 |
|
223 |
-
|
|
|
|
|
224 |
|
225 |
-
|
226 |
-
with ctx:
|
227 |
-
out = model.generate(x[-num_memory_tokens:],
|
228 |
-
1,
|
229 |
-
temperature=temperature,
|
230 |
-
return_prime=False,
|
231 |
-
verbose=False)
|
232 |
|
233 |
-
|
234 |
|
235 |
-
|
236 |
-
cur_time += o
|
237 |
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
-
|
241 |
-
x = torch.cat((x, out), 1)
|
242 |
-
else:
|
243 |
-
break
|
244 |
|
245 |
-
outy = x.tolist()[0][len(input_seq):]
|
246 |
-
|
247 |
-
output1.extend(outy)
|
248 |
-
output2.append(outy)
|
249 |
-
|
250 |
print('=' * 70)
|
251 |
print('Done!')
|
252 |
print('=' * 70)
|
253 |
|
254 |
#===============================================================================
|
255 |
print('Rendering results...')
|
256 |
-
|
257 |
-
print('=' * 70)
|
258 |
-
print('Sample INTs', output1[:12])
|
259 |
print('=' * 70)
|
|
|
|
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
accompaniment_MIDI_patch_number = 0
|
264 |
-
melody_MIDI_patch_number = 40
|
265 |
|
266 |
-
|
267 |
|
268 |
-
|
269 |
-
|
270 |
|
271 |
-
|
272 |
-
ntime = 0
|
273 |
-
ndur = 0
|
274 |
-
vel = 90
|
275 |
-
npitch = 0
|
276 |
-
channel = 0
|
277 |
|
278 |
-
|
279 |
-
|
280 |
-
patches[3] = melody_MIDI_patch_number
|
281 |
|
282 |
-
|
|
|
|
|
|
|
|
|
283 |
|
284 |
-
|
285 |
-
ndur = (melody_chords[i][1]-128) * 32
|
286 |
-
nchannel = 1
|
287 |
-
npitch = (melody_chords[i][2]-256) % 128
|
288 |
-
vel = max(40, npitch)+20
|
289 |
|
290 |
-
|
291 |
|
292 |
-
|
293 |
|
294 |
-
|
295 |
|
296 |
-
|
297 |
|
298 |
-
|
299 |
|
300 |
-
|
301 |
|
302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
-
|
305 |
|
306 |
-
|
307 |
|
308 |
-
|
309 |
|
310 |
-
|
311 |
|
312 |
-
fn1 = "
|
313 |
|
314 |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
|
315 |
-
output_signature = '
|
316 |
output_file_name = fn1,
|
317 |
track_name='Project Los Angeles',
|
318 |
list_of_MIDI_patches=patches
|
@@ -333,7 +266,7 @@ def Text_to_Music(input_title, input_num_tokens, input_prompt_type):
|
|
333 |
|
334 |
#========================================================
|
335 |
|
336 |
-
output_midi_title =
|
337 |
output_midi_summary = str(song_f[:3])
|
338 |
output_midi = str(new_fn)
|
339 |
output_audio = (16000, audio)
|
@@ -342,7 +275,7 @@ def Text_to_Music(input_title, input_num_tokens, input_prompt_type):
|
|
342 |
|
343 |
print('Output MIDI file name:', output_midi)
|
344 |
print('Output MIDI title:', output_midi_title)
|
345 |
-
print('Output MIDI summary:',
|
346 |
print('=' * 70)
|
347 |
|
348 |
|
@@ -390,7 +323,7 @@ if __name__ == "__main__":
|
|
390 |
|
391 |
gr.Markdown("## Generation results")
|
392 |
|
393 |
-
output_midi_title = gr.Textbox(label="
|
394 |
output_midi_summary = gr.Textbox(label="Output MIDI summary")
|
395 |
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
|
396 |
output_plot = gr.Plot(label="Output MIDI score plot")
|
|
|
30 |
|
31 |
print('Loading model...')
|
32 |
|
33 |
+
SEQ_LEN = 4096 # Models seq len
|
34 |
+
PAD_IDX = 2571 # Models pad index
|
35 |
DEVICE = 'cuda' # 'cuda'
|
36 |
|
37 |
# instantiate the model
|
|
|
39 |
model = TransformerWrapper(
|
40 |
num_tokens = PAD_IDX+1,
|
41 |
max_seq_len = SEQ_LEN,
|
42 |
+
attn_layers = Decoder(dim = 2048, depth = 8, heads = 16, attn_flash = True)
|
43 |
)
|
44 |
|
45 |
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
|
|
|
50 |
print('Loading model checkpoint...')
|
51 |
|
52 |
model.load_state_dict(
|
53 |
+
torch.load('Text_to_Music_Transformer_Medium_Trained_Model_33934_steps_0.6093_loss_0.813_acc.pth',
|
54 |
map_location=DEVICE))
|
55 |
print('=' * 70)
|
56 |
|
|
|
66 |
print('Done!')
|
67 |
print('=' * 70)
|
68 |
|
69 |
+
input_num_tokens = max(8, min(2048, input_num_tokens))
|
|
|
|
|
|
|
70 |
|
71 |
print('-' * 70)
|
72 |
+
print('Input title:', input_title)
|
73 |
print('Req num toks:', input_num_tokens)
|
74 |
+
print('Open-ended prompt:', input_prompt_type)
|
75 |
print('-' * 70)
|
76 |
|
77 |
#===============================================================================
|
78 |
+
|
79 |
+
print('Setting up model patches and loading helper functions...')
|
80 |
+
|
81 |
+
# @title Setup and load model channels MIDI patches
|
82 |
+
|
83 |
+
model_channel_0_piano_family = "Acoustic Grand" # @param ["Acoustic Grand", "Bright Acoustic", "Electric Grand", "Honky-Tonk", "Electric Piano 1", "Electric Piano 2", "Harpsichord", "Clav"]
|
84 |
+
model_channel_1_chromatic_percussion_family = "Music Box" # @param ["Celesta", "Glockenspiel", "Music Box", "Vibraphone", "Marimba", "Xylophone", "Tubular Bells", "Dulcimer"]
|
85 |
+
model_channel_2_organ_family = "Church Organ" # @param ["Drawbar Organ", "Percussive Organ", "Rock Organ", "Church Organ", "Reed Organ", "Accordion", "Harmonica", "Tango Accordion"]
|
86 |
+
model_channel_3_guitar_family = "Acoustic Guitar(nylon)" # @param ["Acoustic Guitar(nylon)", "Acoustic Guitar(steel)", "Electric Guitar(jazz)", "Electric Guitar(clean)", "Electric Guitar(muted)", "Overdriven Guitar", "Distortion Guitar", "Guitar Harmonics"]
|
87 |
+
model_channel_4_bass_family = "Fretless Bass" # @param ["Acoustic Bass", "Electric Bass(finger)", "Electric Bass(pick)", "Fretless Bass", "Slap Bass 1", "Slap Bass 2", "Synth Bass 1", "Synth Bass 2"]
|
88 |
+
model_channel_5_strings_family = "Violin" # @param ["Violin", "Viola", "Cello", "Contrabass", "Tremolo Strings", "Pizzicato Strings", "Orchestral Harp", "Timpani"]
|
89 |
+
model_channel_6_ensemble_family = "Choir Aahs" # @param ["String Ensemble 1", "String Ensemble 2", "SynthStrings 1", "SynthStrings 2", "Choir Aahs", "Voice Oohs", "Synth Voice", "Orchestra Hit"]
|
90 |
+
model_channel_7_brass_family = "Trumpet" # @param ["Trumpet", "Trombone", "Tuba", "Muted Trumpet", "French Horn", "Brass Section", "SynthBrass 1", "SynthBrass 2"]
|
91 |
+
model_channel_8_reed_family = "Alto Sax" # @param ["Soprano Sax", "Alto Sax", "Tenor Sax", "Baritone Sax", "Oboe", "English Horn", "Bassoon", "Clarinet"]
|
92 |
+
model_channel_9_pipe_family = "Flute" # @param ["Piccolo", "Flute", "Recorder", "Pan Flute", "Blown Bottle", "Skakuhachi", "Whistle", "Ocarina"]
|
93 |
+
model_channel_10_synth_lead_family = "Lead 8 (bass+lead)" # @param ["Lead 1 (square)", "Lead 2 (sawtooth)", "Lead 3 (calliope)", "Lead 4 (chiff)", "Lead 5 (charang)", "Lead 6 (voice)", "Lead 7 (fifths)", "Lead 8 (bass+lead)"]
|
94 |
+
model_channel_11_synth_pad_family = "Pad 2 (warm)" # @param ["Pad 1 (new age)", "Pad 2 (warm)", "Pad 3 (polysynth)", "Pad 4 (choir)", "Pad 5 (bowed)", "Pad 6 (metallic)", "Pad 7 (halo)", "Pad 8 (sweep)"]
|
95 |
+
model_channel_12_synth_effects_family = "FX 3 (crystal)" # @param ["FX 1 (rain)", "FX 2 (soundtrack)", "FX 3 (crystal)", "FX 4 (atmosphere)", "FX 5 (brightness)", "FX 6 (goblins)", "FX 7 (echoes)", "FX 8 (sci-fi)"]
|
96 |
+
model_channel_13_ethnic_family = "Banjo" # @param ["Sitar", "Banjo", "Shamisen", "Koto", "Kalimba", "Bagpipe", "Fiddle", "Shanai"]
|
97 |
+
model_channel_14_percussive_family = "Melodic Tom" # @param ["Tinkle Bell", "Agogo", "Steel Drums", "Woodblock", "Taiko Drum", "Melodic Tom", "Synth Drum", "Reverse Cymbal"]
|
98 |
+
model_channel_15_sound_effects_family = "Bird Tweet" # @param ["Guitar Fret Noise", "Breath Noise", "Seashore", "Bird Tweet", "Telephone Ring", "Helicopter", "Applause", "Gunshot"]
|
99 |
+
model_channel_16_drums_family = "Drums" # @param ["Drums"]
|
100 |
+
|
101 |
+
print('=' * 70)
|
102 |
+
print('Loading helper functions...')
|
103 |
+
|
104 |
+
def txt2tokens(txt):
|
105 |
+
return [ord(char)+2440 if 0 < ord(char) < 128 else 0+2440 for char in txt.lower()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
def tokens2txt(tokens):
|
108 |
+
return [chr(tok-2440) for tok in tokens if 0+2440 < tok < 128+2440 ]
|
109 |
|
110 |
+
print('=' * 70)
|
111 |
+
print('Setting up patches...')
|
112 |
+
print('=' * 70)
|
113 |
|
114 |
+
instruments = [v[1] for v in TMIDIX.Number2patch.items()]
|
115 |
+
|
116 |
+
patches = [instruments.index(model_channel_0_piano_family),
|
117 |
+
instruments.index(model_channel_1_chromatic_percussion_family),
|
118 |
+
instruments.index(model_channel_2_organ_family),
|
119 |
+
instruments.index(model_channel_3_guitar_family),
|
120 |
+
instruments.index(model_channel_4_bass_family),
|
121 |
+
instruments.index(model_channel_5_strings_family),
|
122 |
+
instruments.index(model_channel_6_ensemble_family),
|
123 |
+
instruments.index(model_channel_7_brass_family),
|
124 |
+
instruments.index(model_channel_8_reed_family),
|
125 |
+
9, # Drums patch
|
126 |
+
instruments.index(model_channel_9_pipe_family),
|
127 |
+
instruments.index(model_channel_10_synth_lead_family),
|
128 |
+
instruments.index(model_channel_11_synth_pad_family),
|
129 |
+
instruments.index(model_channel_12_synth_effects_family),
|
130 |
+
instruments.index(model_channel_13_ethnic_family),
|
131 |
+
instruments.index(model_channel_15_sound_effects_family)
|
132 |
+
]
|
133 |
|
134 |
+
print('Done!')
|
135 |
+
print('=' * 70)
|
136 |
+
|
137 |
+
print('Generating...')
|
138 |
|
139 |
+
#@title Standard Text-to-Music Generator
|
|
|
140 |
|
141 |
+
#@markdown Prompt settings
|
142 |
|
143 |
+
song_title_prompt = input_title
|
144 |
+
open_ended_prompt = input_prompt_type
|
145 |
|
146 |
+
#@markdown Generation settings
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
number_of_tokens_to_generate = input_num_tokens
|
149 |
+
number_of_batches_to_generate = 1 #@param {type:"slider", min:1, max:16, step:1}
|
150 |
+
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
|
151 |
|
152 |
print('=' * 70)
|
153 |
+
print('Text-to-Music Model Generator')
|
|
|
154 |
print('=' * 70)
|
|
|
|
|
|
|
155 |
|
156 |
+
if song_title_prompt == '':
|
157 |
+
outy = [2569]
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
else:
|
160 |
+
if open_ended_prompt:
|
161 |
+
outy = [2569] + txt2tokens(song_title_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
else:
|
164 |
+
outy = [2569] + txt2tokens(song_title_prompt) + [2570]
|
165 |
|
166 |
+
print('Selected prompt sequence:')
|
167 |
+
print(outy[:12])
|
168 |
+
print('=' * 70)
|
169 |
|
170 |
+
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
inp = [outy] * number_of_batches_to_generate
|
173 |
|
174 |
+
inp = torch.LongTensor(inp).cuda()
|
|
|
175 |
|
176 |
+
with ctx:
|
177 |
+
out = model.generate(inp,
|
178 |
+
number_of_tokens_to_generate,
|
179 |
+
temperature=temperature,
|
180 |
+
return_prime=True,
|
181 |
+
verbose=False)
|
182 |
|
183 |
+
out0 = out.tolist()
|
|
|
|
|
|
|
184 |
|
|
|
|
|
|
|
|
|
|
|
185 |
print('=' * 70)
|
186 |
print('Done!')
|
187 |
print('=' * 70)
|
188 |
|
189 |
#===============================================================================
|
190 |
print('Rendering results...')
|
|
|
|
|
|
|
191 |
print('=' * 70)
|
192 |
+
|
193 |
+
out1 = out0[i]
|
194 |
|
195 |
+
print('Sample INTs', out1[:12])
|
196 |
+
print('=' * 70)
|
|
|
|
|
197 |
|
198 |
+
generated_song_title = ''.join(tokens2txt(out1)).title()
|
199 |
|
200 |
+
print('Generated song title:', generated_song_title)
|
201 |
+
print('=' * 70)
|
202 |
|
203 |
+
if len(out1) != 0:
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
song = out1
|
206 |
+
song_f = []
|
|
|
207 |
|
208 |
+
time = 0
|
209 |
+
dur = 0
|
210 |
+
vel = 90
|
211 |
+
pitch = 0
|
212 |
+
channel = 0
|
213 |
|
214 |
+
for ss in song:
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
if 0 <= ss < 128:
|
217 |
|
218 |
+
time += ss * 32
|
219 |
|
220 |
+
if 128 <= ss < 256:
|
221 |
|
222 |
+
dur = (ss-128) * 32
|
223 |
|
224 |
+
if 256 <= ss < 2432:
|
225 |
|
226 |
+
chan = (ss-256) // 128
|
227 |
|
228 |
+
if chan < 9:
|
229 |
+
channel = chan
|
230 |
+
elif 9 < chan < 15:
|
231 |
+
channel = chan+1
|
232 |
+
elif chan == 15:
|
233 |
+
channel = 15
|
234 |
+
elif chan == 16:
|
235 |
+
channel = 9
|
236 |
|
237 |
+
pitch = (ss-256) % 128
|
238 |
|
239 |
+
if 2432 <= ss < 2440:
|
240 |
|
241 |
+
vel = (((ss-2432)+1) * 15)-1
|
242 |
|
243 |
+
song_f.append(['note', time, dur, channel, pitch, vel, chan*8 ])
|
244 |
|
245 |
+
fn1 = "Text-to-Music-Transformer-Composition"
|
246 |
|
247 |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
|
248 |
+
output_signature = 'Text-to-Music Transformer',
|
249 |
output_file_name = fn1,
|
250 |
track_name='Project Los Angeles',
|
251 |
list_of_MIDI_patches=patches
|
|
|
266 |
|
267 |
#========================================================
|
268 |
|
269 |
+
output_midi_title = generated_song_title
|
270 |
output_midi_summary = str(song_f[:3])
|
271 |
output_midi = str(new_fn)
|
272 |
output_audio = (16000, audio)
|
|
|
275 |
|
276 |
print('Output MIDI file name:', output_midi)
|
277 |
print('Output MIDI title:', output_midi_title)
|
278 |
+
print('Output MIDI summary:', output_midi_summary)
|
279 |
print('=' * 70)
|
280 |
|
281 |
|
|
|
323 |
|
324 |
gr.Markdown("## Generation results")
|
325 |
|
326 |
+
output_midi_title = gr.Textbox(label="Generated MIDI title")
|
327 |
output_midi_summary = gr.Textbox(label="Output MIDI summary")
|
328 |
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
|
329 |
output_plot = gr.Plot(label="Output MIDI score plot")
|