Spaces:
Runtime error
Runtime error
# https://huggingface.co/spaces/asigalov61/LAKH-MIDI-Dataset-Search | |
import os | |
import time as reqtime | |
import datetime | |
from pytz import timezone | |
from sentence_transformers import SentenceTransformer | |
from sentence_transformers import util | |
import numpy as np | |
from datasets import load_dataset | |
import gradio as gr | |
import copy | |
import random | |
import pickle | |
import zlib | |
from midi_to_colab_audio import midi_to_colab_audio | |
import TMIDIX | |
import matplotlib.pyplot as plt | |
#========================================================================================================== | |
def find_midi(input_search_string): | |
print('=' * 70) | |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
start_time = reqtime.time() | |
print('-' * 70) | |
print('Req search str:', input_search_string) | |
print('-' * 70) | |
print('Searching...') | |
query_embedding = model.encode([input_search_string]) | |
# Compute cosine similarity between query and each sentence in the corpus | |
similarities = util.cos_sim(query_embedding, corpus_embeddings) | |
top_ten_matches_idxs = np.argsort(-similarities)[0][:10].tolist() | |
# Find the index of the most similar sentence | |
closest_index = np.argmax(similarities) | |
closest_index_match_ratio = max(similarities[0].tolist()) | |
best_corpus_match = mc_dataset['train'][closest_index.tolist()] | |
print('Done!') | |
print('=' * 70) | |
print('Match corpus index', closest_index) | |
print('Match corpus ratio', closest_index_match_ratio) | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
LAKH_hash = best_corpus_match['location'].split('/')[-1].split('.mid')[0] | |
LAKH_caption = str(best_corpus_match['caption']) | |
zlib_file_name = all_MIDI_files_names[MIDI_files_names.index(LAKH_hash)][1] | |
print('Fetching MIDI score...') | |
with open(zlib_file_name, 'rb') as f: | |
compressed_data = f.read() | |
# Decompress the data | |
decompressed_data = zlib.decompress(compressed_data) | |
# Convert the bytes back to a list using pickle | |
scores_data = pickle.loads(decompressed_data) | |
fnames = [f[0] for f in scores_data] | |
fnameidx = fnames.index(LAKH_hash) | |
MIDI_score_metadata = scores_data[fnameidx][1] | |
MIDI_score_data = scores_data[fnameidx][2] | |
print('Rendering results...') | |
print('=' * 70) | |
print('MIDi Title:', LAKH_hash) | |
print('Sample INTs', MIDI_score_data[:12]) | |
print('=' * 70) | |
if len(MIDI_score_data) != 0: | |
song = MIDI_score_data | |
song_f = [] | |
time = 0 | |
dur = 0 | |
vel = 90 | |
pitch = 0 | |
channel = 0 | |
patches = [-1] * 16 | |
channels = [0] * 16 | |
channels[9] = 1 | |
for ss in song: | |
if 0 <= ss < 256: | |
time += ss * 16 | |
if 256 <= ss < 512: | |
dur = (ss-256) * 16 | |
if 512 <= ss <= 640: | |
patch = (ss-512) | |
if patch < 128: | |
if patch not in patches: | |
if 0 in channels: | |
cha = channels.index(0) | |
channels[cha] = 1 | |
else: | |
cha = 15 | |
patches[cha] = patch | |
channel = patches.index(patch) | |
else: | |
channel = patches.index(patch) | |
if patch == 128: | |
channel = 9 | |
if 640 < ss < 768: | |
ptc = (ss-640) | |
if 768 < ss < 896: | |
vel = (ss - 768) | |
song_f.append(['note', time, dur, channel, ptc, vel, patch ]) | |
patches = [0 if x==-1 else x for x in patches] | |
song_f = song_f[:3000] | |
print('=' * 70) | |
#=============================================================================== | |
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f) | |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score, | |
output_signature = 'LAKH MIDI Dataset Search', | |
output_file_name = LAKH_hash, | |
track_name='Project Los Angeles', | |
list_of_MIDI_patches=patches | |
) | |
new_fn = LAKH_hash + '.mid' | |
audio = midi_to_colab_audio(new_fn, | |
soundfont_path=soundfont, | |
sample_rate=16000, | |
volume_scale=10, | |
output_for_gradio=True | |
) | |
print('Done!') | |
print('=' * 70) | |
#======================================================== | |
output_midi_title = str(LAKH_hash) | |
output_midi_caption = str(best_corpus_match['caption']) | |
output_midi_summary = str(MIDI_score_metadata) | |
output_midi_caps = str(best_corpus_match) | |
output_midi = str(new_fn) | |
output_audio = (16000, audio) | |
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi_title, return_plt=True) | |
print('Output MIDI file name:', output_midi) | |
print('Output MIDI caption string:', output_midi_caption) | |
print('Output MIDI title:', output_midi_title) | |
print('Output MIDI summary:', output_midi_summary) | |
print('Output MidiCaps information:', output_midi_caps) | |
print('=' * 70) | |
#======================================================== | |
print('-' * 70) | |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('-' * 70) | |
print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
return output_midi_title, output_midi_caption, output_midi_summary, output_midi_caps, output_midi, output_audio, output_plot | |
#========================================================================================================== | |
if __name__ == "__main__": | |
PDT = timezone('US/Pacific') | |
print('=' * 70) | |
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" | |
print('Loading MidiCaps dataset...') | |
mc_dataset = load_dataset("amaai-lab/MidiCaps") | |
print('=' * 70) | |
print('Loading files list...') | |
all_MIDI_files_names = TMIDIX.Tegridy_Any_Pickle_File_Reader('LAKH_all_files_names') | |
MIDI_files_names = [f[0] for f in all_MIDI_files_names] | |
print('=' * 70) | |
print('Loading MIDI corpus embeddings...') | |
corpus_embeddings = np.load('MIDI_corpus_embeddings_all-mpnet-base-v2.npz.gz.npz')['data'] | |
print('Done!') | |
print('=' * 70) | |
print('Loading Sentence Transformer model...') | |
model = SentenceTransformer('all-mpnet-base-v2') | |
print('Done!') | |
print('=' * 70) | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>LAKH MIDI Dataset Search</h1>") | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Search and explore LAKH MIDI dataset with MidiCaps dataset and sentence transformer</h1>") | |
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.LAKH-MIDI-Dataset-Search&style=flat)\n\n" | |
"This is a demo for MidiCaps dataset\n\n" | |
"Check out [MidiCaps Dataset](https://huggingface.co/datasets/amaai-lab/MidiCaps) on Hugging Face!\n\n" | |
) | |
gr.Markdown("# Enter any desired song description\n\n") | |
input_search_string = gr.Textbox(label="Search string", value="Cheery pop song about love and happiness") | |
submit = gr.Button(value='Search') | |
gr.ClearButton(components=[input_search_string]) | |
gr.Markdown("# Search results") | |
output_midi_title = gr.Textbox(label="Output MIDI title") | |
output_midi_caption = gr.Textbox(label="MIDI caption string") | |
output_midi_summary = gr.Textbox(label="Aggregated MIDI file text metadata") | |
output_midi_caps = gr.Textbox(label="MidiCaps dataset information") | |
output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio") | |
output_plot = gr.Plot(label="Output MIDI score plot") | |
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) | |
run_event = submit.click(find_midi, [input_search_string], | |
[output_midi_title, output_midi_caption, output_midi_summary, output_midi_caps, output_midi, output_audio, output_plot ]) | |
app.launch() |