asigalov61's picture
Update app.py
71e7dc5 verified
raw
history blame
18.1 kB
# https://huggingface.co/spaces/asigalov61/Intelligent-MIDI-Comparator
import os.path
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
from sklearn.metrics import pairwise
# =================================================================================================
def hsv_to_rgb(h, s, v):
if s == 0.0:
return v, v, v
i = int(h*6.0)
f = (h*6.0) - i
p = v*(1.0 - s)
q = v*(1.0 - s*f)
t = v*(1.0 - s*(1.0-f))
i = i%6
return [(v, t, p), (q, v, p), (p, v, t), (p, q, v), (t, p, v), (v, p, q)][i]
def generate_colors(n):
return [hsv_to_rgb(i/n, 1, 1) for i in range(n)]
def add_arrays(a, b):
return [sum(pair) for pair in zip(a, b)]
def plot_ms_SONG(ms_song,
preview_length_in_notes=0,
block_lines_times_list = None,
plot_title='ms Song',
max_num_colors=129,
drums_color_num=128,
plot_size=(11,4),
note_height = 0.75,
show_grid_lines=False,
return_plt = False,
timings_multiplier=1,
plot_curve_values=None,
plot_curve_notes_step=200,
save_plot=''
):
'''Tegridy ms SONG plotter/vizualizer'''
notes = [s for s in ms_song if s[0] == 'note']
if (len(max(notes, key=len)) != 7) and (len(min(notes, key=len)) != 7):
print('The song notes do not have patches information')
print('Please add patches to the notes in the song')
else:
start_times = [(s[1] * timings_multiplier) / 1000 for s in notes]
durations = [(s[2] * timings_multiplier) / 1000 for s in notes]
pitches = [s[4] for s in notes]
patches = [s[6] for s in notes]
colors = generate_colors(max_num_colors)
colors[drums_color_num] = (1, 1, 1)
pbl = (notes[preview_length_in_notes][1] * timings_multiplier) / 1000
fig, ax = plt.subplots(figsize=plot_size)
# Create a rectangle for each note with color based on patch number
for start, duration, pitch, patch in zip(start_times, durations, pitches, patches):
rect = plt.Rectangle((start, pitch), duration, note_height, facecolor=colors[patch])
ax.add_patch(rect)
if plot_curve_values is not None:
stimes = start_times[plot_curve_notes_step // 2::plot_curve_notes_step]
min_val = min(plot_curve_values)
max_val = max(plot_curve_values)
spcva = [((value - min_val) / (max(max_val - min_val, 0.00001))) * 100 for value in plot_curve_values]
ax.plot(stimes, spcva, marker='o', linestyle='-', color='w')
# Set the limits of the plot
ax.set_xlim([min(start_times), max(add_arrays(start_times, durations))])
ax.set_ylim([min(spcva), max(spcva)])
# Set the background color to black
ax.set_facecolor('black')
fig.patch.set_facecolor('white')
if preview_length_in_notes > 0:
ax.axvline(x=pbl, c='white')
if block_lines_times_list:
for bl in block_lines_times_list:
ax.axvline(x=bl, c='white')
if show_grid_lines:
ax.grid(color='white')
plt.xlabel('Time (s)', c='black')
plt.ylabel('MIDI Pitch', c='black')
plt.title(plot_title)
if return_plt:
return fig
if save_plot == '':
plt.show()
else:
plt.savefig(save_plot)
# =================================================================================================
def read_MIDI(input_midi):
#===============================================================================
raw_score = TMIDIX.midi2single_track_ms_score(input_midi)
#===============================================================================
# Enhanced score notes
events_matrix1 = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
#=======================================================
# PRE-PROCESSING
instruments_list = list(set([y[3] for y in events_matrix1]))
#======================================
events_matrix1 = TMIDIX.augment_enhanced_score_notes(events_matrix1, timings_divider=16)
#=======================================================
# FINAL PROCESSING
melody_chords = []
melody_chords2 = []
# Break between compositions / Intro seq
if 9 in instruments_list:
drums_present = 19331 # Yes
else:
drums_present = 19330 # No
if events_matrix1[0][3] != 9:
pat = events_matrix1[0][6]
else:
pat = 128
melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
abs_time = 0
pbar_time = 0
pe = events_matrix1[0]
chords_counter = 1
comp_chords_len = len(list(set([y[1] for y in events_matrix1])))
for e in events_matrix1:
#=======================================================
# Timings...
# Cliping all values...
delta_time = max(0, min(255, e[1]-pe[1]))
# Durations and channels
dur = max(0, min(255, e[2]))
cha = max(0, min(15, e[3]))
# Patches
if cha == 9: # Drums patch will be == 128
pat = 128
else:
pat = e[6]
# Pitches
ptc = max(1, min(127, e[4]))
# Velocities
# Calculating octo-velocity
vel = max(8, min(127, e[5]))
velocity = round(vel / 15)-1
#=======================================================
# FINAL NOTE SEQ
# Writing final note asynchronously
dur_vel = (8 * dur) + velocity
pat_ptc = (129 * pat) + ptc
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304])
pe = e
return melody_chords, melody_chords2
# =================================================================================================
def tokens_to_MIDI(tokens, MIDI_name):
print('Rendering results...')
print('=' * 70)
print('Sample INTs', tokens[:12])
print('=' * 70)
if len(tokens) != 0:
song = tokens
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [-1] * 16
channels = [0] * 16
channels[9] = 1
for ss in song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 2304:
dur = ((ss-256) // 8) * 16
vel = (((ss-256) % 8)+1) * 15
if 2304 <= ss < 18945:
patch = (ss-2304) // 129
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-2304) % 129
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
patches = [0 if x==-1 else x for x in patches]
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Intelligent MIDI Comparator',
output_file_name = MIDI_name,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = MIDI_name+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
return new_fn, song_f, audio
# =================================================================================================
@spaces.GPU
def CompareMIDIs(input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('Loading model...')
SEQ_LEN = 8192 # Models seq len
PAD_IDX = 19463 # Models pad index
DEVICE = 'cuda' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 32, heads = 32, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Giant_Music_Transformer_Large_Trained_Model_36074_steps_0.3067_loss_0.927_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
sfn = os.path.basename(input_src_midi.name)
sfn1 = sfn.split('.')[0]
tfn = os.path.basename(input_trg_midi.name)
tfn1 = tfn.split('.')[0]
print('-' * 70)
print('Input src MIDI name:', sfn)
print('Input trg MIDI name:', tfn)
print('Req sampling resolution:', input_sampling_resolution)
print('Req sampling overlap:', input_sampling_overlap)
print('-' * 70)
#===============================================================================
print('Loading MIDIs...')
src_tokens, src_notes = read_MIDI(input_src_midi.name)
trg_tokens, trg_notes = read_MIDI(input_trg_midi.name)
#==================================================================
print('=' * 70)
print('Number of src tokens:', len(src_tokens))
print('Number of src notes:', len(src_notes))
print('Number of trg tokens:', len(trg_tokens))
print('Number of trg notes:', len(trg_notes))
#==========================================================================
print('=' * 70)
print('Comparing...')
print('=' * 70)
print('Giant Music Transformer MIDI Comparator')
print('=' * 70)
sampling_resolution = max(40, min(1000, input_sampling_resolution)) * 3
sampling_overlap = max(0, min(500, input_sampling_overlap)) * 3
comp_length = (min(len(src_tokens), len(trg_tokens)) // sampling_resolution) * sampling_resolution
input_src_tokens = src_tokens[:comp_length]
input_trg_tokens = trg_tokens[:comp_length]
comp_cos_sims = []
torch.cuda.empty_cache()
for i in range(0, comp_length, max(1, sampling_resolution-sampling_overlap)):
inp = [input_src_tokens[i:i+sampling_resolution]]
inp = torch.LongTensor(inp).cuda()
with ctx:
with torch.no_grad():
out = model(inp)
cache = out[2]
src_embedings = cache.layer_hiddens[-1]
inp = [input_trg_tokens[i:i+sampling_resolution]]
inp = torch.LongTensor(inp).cuda()
with ctx:
with torch.no_grad():
out = model(inp)
cache = out[2]
trg_embedings = cache.layer_hiddens[-1]
cos_sim = pairwise.cosine_similarity([src_embedings.cpu().detach().numpy()[0].flatten()],
[trg_embedings.cpu().detach().numpy()[0].flatten()]
).tolist()[0][0]
comp_cos_sims.append(cos_sim)
output_min_sim = min(comp_cos_sims)
output_avg_sim = sum(comp_cos_sims) / len(comp_cos_sims)
output_max_sim = max(comp_cos_sims)
print('Min sim:', output_min_sim)
print('Avg sim:', output_avg_sim)
print('max sim:', output_max_sim)
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
sname, ssong_f, saudio = tokens_to_MIDI(src_tokens[:comp_length], sfn1)
tname, tsong_f, taudio = tokens_to_MIDI(trg_tokens[:comp_length], tfn1)
#========================================================
output_src_audio = (16000, saudio)
output_src_plot = plot_ms_SONG(ssong_f,
plot_title=sfn1,
plot_curve_values=comp_cos_sims,
plot_curve_notes_step=max(1, sampling_resolution-sampling_overlap) // 3,
return_plt=True
)
output_trg_audio = (16000, taudio)
output_trg_plot = plot_ms_SONG(tsong_f,
plot_title=tfn1,
plot_curve_values=comp_cos_sims,
plot_curve_notes_step=max(1, sampling_resolution-sampling_overlap) // 3,
return_plt=True
)
print('Done!')
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Intelligent MIDI Comparator</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Intelligent comparison of any pair of MIDIs</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Intelligent-MIDI-Comparator&style=flat)\n\n"
"This is a demo for the Giant Music Transformer\n\n"
"Check out [Giant Music Transformer](https://github.com/asigalov61/Giant-Music-Transformer) on GitHub!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb)"
" for all features, faster execution and endless generation"
)
gr.Markdown("## Upload your MIDIs or select a sample example below")
gr.Markdown("## Upload source MIDI")
input_src_midi = gr.File(label="Source MIDI", file_types=[".midi", ".mid", ".kar"])
gr.Markdown("## Upload target MIDI")
input_trg_midi = gr.File(label="Target MIDI", file_types=[".midi", ".mid", ".kar"])
gr.Markdown("### Make sure that the MIDI has at least sampling resolution number of notes")
input_sampling_resolution = gr.Slider(50, 2000, value=500, step=10, label="Sampling resolution in notes")
gr.Markdown("### Make sure that the sampling overlap value is less than sampling resolution value")
input_sampling_overlap = gr.Slider(0, 1000, value=0, step=10, label="Sampling overlap in notes")
run_btn = gr.Button("compare", variant="primary")
gr.Markdown("## MIDI comparison results")
output_min_sim = gr.Number(label="Minimum similarity")
output_avg_sim = gr.Number(label="Average similarity")
output_max_sim = gr.Number(label="Maximum similarity")
output_src_audio = gr.Audio(label="Source MIDI audio", format="mp3", elem_id="midi_audio")
output_src_plot = gr.Plot(label="Source MIDI plot")
output_trg_audio = gr.Audio(label="Target MIDI audio", format="mp3", elem_id="midi_audio")
output_trg_plot = gr.Plot(label="Target MIDI plot")
run_event = run_btn.click(CompareMIDIs, [input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap],
[output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim])
gr.Examples(
[
["Honesty.kar", "Hotel California.mid", 200, 0],
["House Of The Rising Sun.mid", "Nothing Else Matters.kar", 200, 0],
["Deep Relaxation Melody #6.mid", "Deep Relaxation Melody #8.mid", 200, 0],
["I Just Called To Say I Love You.mid", "Sharing The Night Together.kar", 200, 0],
],
[input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap],
[output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim],
CompareMIDIs,
cache_examples=True,
)
app.queue().launch()