Spaces:
Running
on
Zero
Running
on
Zero
# https://huggingface.co/spaces/asigalov61/Intelligent-MIDI-Comparator | |
import os.path | |
import time as reqtime | |
import datetime | |
from pytz import timezone | |
import torch | |
import spaces | |
import gradio as gr | |
from x_transformer_1_23_2 import * | |
import random | |
import tqdm | |
from midi_to_colab_audio import midi_to_colab_audio | |
import TMIDIX | |
import matplotlib.pyplot as plt | |
from sklearn.metrics import pairwise | |
# ================================================================================================= | |
def hsv_to_rgb(h, s, v): | |
if s == 0.0: | |
return v, v, v | |
i = int(h*6.0) | |
f = (h*6.0) - i | |
p = v*(1.0 - s) | |
q = v*(1.0 - s*f) | |
t = v*(1.0 - s*(1.0-f)) | |
i = i%6 | |
return [(v, t, p), (q, v, p), (p, v, t), (p, q, v), (t, p, v), (v, p, q)][i] | |
def generate_colors(n): | |
return [hsv_to_rgb(i/n, 1, 1) for i in range(n)] | |
def add_arrays(a, b): | |
return [sum(pair) for pair in zip(a, b)] | |
def plot_ms_SONG(ms_song, | |
preview_length_in_notes=0, | |
block_lines_times_list = None, | |
plot_title='ms Song', | |
max_num_colors=129, | |
drums_color_num=128, | |
plot_size=(11,4), | |
note_height = 0.75, | |
show_grid_lines=False, | |
return_plt = False, | |
timings_multiplier=1, | |
plot_curve_values=None, | |
plot_curve_notes_step=200, | |
save_plot='' | |
): | |
'''Tegridy ms SONG plotter/vizualizer''' | |
notes = [s for s in ms_song if s[0] == 'note'] | |
if (len(max(notes, key=len)) != 7) and (len(min(notes, key=len)) != 7): | |
print('The song notes do not have patches information') | |
print('Please add patches to the notes in the song') | |
else: | |
start_times = [(s[1] * timings_multiplier) / 1000 for s in notes] | |
durations = [(s[2] * timings_multiplier) / 1000 for s in notes] | |
pitches = [s[4] for s in notes] | |
patches = [s[6] for s in notes] | |
colors = generate_colors(max_num_colors) | |
colors[drums_color_num] = (1, 1, 1) | |
pbl = (notes[preview_length_in_notes][1] * timings_multiplier) / 1000 | |
fig, ax = plt.subplots(figsize=plot_size) | |
# Create a rectangle for each note with color based on patch number | |
for start, duration, pitch, patch in zip(start_times, durations, pitches, patches): | |
rect = plt.Rectangle((start, pitch), duration, note_height, facecolor=colors[patch]) | |
ax.add_patch(rect) | |
if plot_curve_values is not None: | |
stimes = start_times[plot_curve_notes_step // 2::plot_curve_notes_step] | |
min_val = min(plot_curve_values) | |
max_val = max(plot_curve_values) | |
spcva = [((value - min_val) / (max(max_val - min_val, 0.00001))) * 100 for value in plot_curve_values] | |
ax.plot(stimes, spcva, marker='o', linestyle='-', color='w') | |
# Set the limits of the plot | |
ax.set_xlim([min(start_times), max(add_arrays(start_times, durations))]) | |
ax.set_ylim([min(spcva), max(spcva)]) | |
# Set the background color to black | |
ax.set_facecolor('black') | |
fig.patch.set_facecolor('white') | |
if preview_length_in_notes > 0: | |
ax.axvline(x=pbl, c='white') | |
if block_lines_times_list: | |
for bl in block_lines_times_list: | |
ax.axvline(x=bl, c='white') | |
if show_grid_lines: | |
ax.grid(color='white') | |
plt.xlabel('Time (s)', c='black') | |
plt.ylabel('MIDI Pitch', c='black') | |
plt.title(plot_title) | |
if return_plt: | |
return fig | |
if save_plot == '': | |
plt.show() | |
else: | |
plt.savefig(save_plot) | |
# ================================================================================================= | |
def read_MIDI(input_midi): | |
#=============================================================================== | |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi) | |
#=============================================================================== | |
# Enhanced score notes | |
events_matrix1 = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] | |
#======================================================= | |
# PRE-PROCESSING | |
instruments_list = list(set([y[3] for y in events_matrix1])) | |
#====================================== | |
events_matrix1 = TMIDIX.augment_enhanced_score_notes(events_matrix1, timings_divider=16) | |
#======================================================= | |
# FINAL PROCESSING | |
melody_chords = [] | |
melody_chords2 = [] | |
# Break between compositions / Intro seq | |
if 9 in instruments_list: | |
drums_present = 19331 # Yes | |
else: | |
drums_present = 19330 # No | |
if events_matrix1[0][3] != 9: | |
pat = events_matrix1[0][6] | |
else: | |
pat = 128 | |
melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq | |
#======================================================= | |
# MAIN PROCESSING CYCLE | |
#======================================================= | |
abs_time = 0 | |
pbar_time = 0 | |
pe = events_matrix1[0] | |
chords_counter = 1 | |
comp_chords_len = len(list(set([y[1] for y in events_matrix1]))) | |
for e in events_matrix1: | |
#======================================================= | |
# Timings... | |
# Cliping all values... | |
delta_time = max(0, min(255, e[1]-pe[1])) | |
# Durations and channels | |
dur = max(0, min(255, e[2])) | |
cha = max(0, min(15, e[3])) | |
# Patches | |
if cha == 9: # Drums patch will be == 128 | |
pat = 128 | |
else: | |
pat = e[6] | |
# Pitches | |
ptc = max(1, min(127, e[4])) | |
# Velocities | |
# Calculating octo-velocity | |
vel = max(8, min(127, e[5])) | |
velocity = round(vel / 15)-1 | |
#======================================================= | |
# FINAL NOTE SEQ | |
# Writing final note asynchronously | |
dur_vel = (8 * dur) + velocity | |
pat_ptc = (129 * pat) + ptc | |
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304]) | |
melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304]) | |
pe = e | |
return melody_chords, melody_chords2 | |
# ================================================================================================= | |
def tokens_to_MIDI(tokens, MIDI_name): | |
print('Rendering results...') | |
print('=' * 70) | |
print('Sample INTs', tokens[:12]) | |
print('=' * 70) | |
if len(tokens) != 0: | |
song = tokens | |
song_f = [] | |
time = 0 | |
dur = 0 | |
vel = 90 | |
pitch = 0 | |
channel = 0 | |
patches = [-1] * 16 | |
channels = [0] * 16 | |
channels[9] = 1 | |
for ss in song: | |
if 0 <= ss < 256: | |
time += ss * 16 | |
if 256 <= ss < 2304: | |
dur = ((ss-256) // 8) * 16 | |
vel = (((ss-256) % 8)+1) * 15 | |
if 2304 <= ss < 18945: | |
patch = (ss-2304) // 129 | |
if patch < 128: | |
if patch not in patches: | |
if 0 in channels: | |
cha = channels.index(0) | |
channels[cha] = 1 | |
else: | |
cha = 15 | |
patches[cha] = patch | |
channel = patches.index(patch) | |
else: | |
channel = patches.index(patch) | |
if patch == 128: | |
channel = 9 | |
pitch = (ss-2304) % 129 | |
song_f.append(['note', time, dur, channel, pitch, vel, patch ]) | |
patches = [0 if x==-1 else x for x in patches] | |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, | |
output_signature = 'Intelligent MIDI Comparator', | |
output_file_name = MIDI_name, | |
track_name='Project Los Angeles', | |
list_of_MIDI_patches=patches | |
) | |
new_fn = MIDI_name+'.mid' | |
audio = midi_to_colab_audio(new_fn, | |
soundfont_path=soundfont, | |
sample_rate=16000, | |
volume_scale=10, | |
output_for_gradio=True | |
) | |
print('Done!') | |
print('=' * 70) | |
return new_fn, song_f, audio | |
# ================================================================================================= | |
# @spaces.GPU | |
def CompareMIDIs(input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap): | |
print('=' * 70) | |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
start_time = reqtime.time() | |
print('Loading model...') | |
SEQ_LEN = 8192 # Models seq len | |
PAD_IDX = 19463 # Models pad index | |
DEVICE = 'cpu' # 'cuda' | |
# instantiate the model | |
model = TransformerWrapper( | |
num_tokens = PAD_IDX+1, | |
max_seq_len = SEQ_LEN, | |
attn_layers = Decoder(dim = 1024, depth = 32, heads = 32, attn_flash = True) | |
) | |
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) | |
model.to(DEVICE) | |
print('=' * 70) | |
print('Loading model checkpoint...') | |
model.load_state_dict( | |
torch.load('Giant_Music_Transformer_Large_Trained_Model_36074_steps_0.3067_loss_0.927_acc.pth', | |
map_location=DEVICE)) | |
print('=' * 70) | |
model.eval() | |
if DEVICE == 'cpu': | |
dtype = torch.bfloat16 | |
else: | |
dtype = torch.bfloat16 | |
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) | |
print('Done!') | |
print('=' * 70) | |
sfn = os.path.basename(input_src_midi.name) | |
sfn1 = sfn.split('.')[0] | |
tfn = os.path.basename(input_trg_midi.name) | |
tfn1 = tfn.split('.')[0] | |
print('-' * 70) | |
print('Input src MIDI name:', sfn) | |
print('Input trg MIDI name:', tfn) | |
print('Req sampling resolution:', input_sampling_resolution) | |
print('Req sampling overlap:', input_sampling_overlap) | |
print('-' * 70) | |
#=============================================================================== | |
print('Loading MIDIs...') | |
src_tokens, src_notes = read_MIDI(input_src_midi.name) | |
trg_tokens, trg_notes = read_MIDI(input_trg_midi.name) | |
#================================================================== | |
print('=' * 70) | |
print('Number of src tokens:', len(src_tokens)) | |
print('Number of src notes:', len(src_notes)) | |
print('Number of trg tokens:', len(trg_tokens)) | |
print('Number of trg notes:', len(trg_notes)) | |
#========================================================================== | |
print('=' * 70) | |
print('Comparing...') | |
print('=' * 70) | |
print('Giant Music Transformer MIDI Comparator') | |
print('=' * 70) | |
sampling_resolution = max(40, min(1000, input_sampling_resolution)) * 3 | |
sampling_overlap = max(0, min(500, input_sampling_overlap)) * 3 | |
comp_length = (min(len(src_tokens), len(trg_tokens)) // sampling_resolution) * sampling_resolution | |
input_src_tokens = src_tokens[:comp_length] | |
input_trg_tokens = trg_tokens[:comp_length] | |
comp_cos_sims = [] | |
torch.cuda.empty_cache() | |
for i in range(0, comp_length, max(1, sampling_resolution-sampling_overlap)): | |
inp = [input_src_tokens[i:i+sampling_resolution]] | |
inp = torch.LongTensor(inp).to(DEVICE) | |
with ctx: | |
with torch.no_grad(): | |
out = model(inp) | |
cache = out[2] | |
src_embedings = cache.layer_hiddens[-1] | |
inp = [input_trg_tokens[i:i+sampling_resolution]] | |
inp = torch.LongTensor(inp).to(DEVICE) | |
with ctx: | |
with torch.no_grad(): | |
out = model(inp) | |
cache = out[2] | |
trg_embedings = cache.layer_hiddens[-1] | |
cos_sim = pairwise.cosine_similarity([src_embedings.cpu().detach().numpy()[0].flatten()], | |
[trg_embedings.cpu().detach().numpy()[0].flatten()] | |
).tolist()[0][0] | |
comp_cos_sims.append(cos_sim) | |
output_min_sim = min(comp_cos_sims) | |
output_avg_sim = sum(comp_cos_sims) / len(comp_cos_sims) | |
output_max_sim = max(comp_cos_sims) | |
print('Min sim:', output_min_sim) | |
print('Avg sim:', output_avg_sim) | |
print('max sim:', output_max_sim) | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
#=============================================================================== | |
print('Rendering results...') | |
sname, ssong_f, saudio = tokens_to_MIDI(src_tokens[:comp_length], sfn1) | |
tname, tsong_f, taudio = tokens_to_MIDI(trg_tokens[:comp_length], tfn1) | |
#======================================================== | |
output_src_audio = (16000, saudio) | |
output_src_plot = plot_ms_SONG(ssong_f, | |
plot_title=sfn1, | |
plot_curve_values=comp_cos_sims, | |
plot_curve_notes_step=max(1, sampling_resolution-sampling_overlap) // 3, | |
return_plt=True | |
) | |
output_trg_audio = (16000, taudio) | |
output_trg_plot = plot_ms_SONG(tsong_f, | |
plot_title=tfn1, | |
plot_curve_values=comp_cos_sims, | |
plot_curve_notes_step=max(1, sampling_resolution-sampling_overlap) // 3, | |
return_plt=True | |
) | |
print('Done!') | |
print('=' * 70) | |
#======================================================== | |
print('-' * 70) | |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('-' * 70) | |
print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
return output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim | |
# ================================================================================================= | |
if __name__ == "__main__": | |
PDT = timezone('US/Pacific') | |
print('=' * 70) | |
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Intelligent MIDI Comparator</h1>") | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Intelligent comparison of any pair of MIDIs</h1>") | |
gr.Markdown( | |
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Intelligent-MIDI-Comparator&style=flat)\n\n" | |
"This is a demo for the Giant Music Transformer\n\n" | |
"Check out [Giant Music Transformer](https://github.com/asigalov61/Giant-Music-Transformer) on GitHub!\n\n" | |
"[Open In Colab]" | |
"(https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb)" | |
" for all features, faster execution and endless generation" | |
) | |
gr.Markdown("## Upload your MIDIs or select a sample example below") | |
gr.Markdown("## Upload source MIDI") | |
input_src_midi = gr.File(label="Source MIDI", file_types=[".midi", ".mid", ".kar"]) | |
gr.Markdown("## Upload target MIDI") | |
input_trg_midi = gr.File(label="Target MIDI", file_types=[".midi", ".mid", ".kar"]) | |
gr.Markdown("### Make sure that the MIDI has at least sampling resolution number of notes") | |
input_sampling_resolution = gr.Slider(50, 2000, value=500, step=10, label="Sampling resolution in notes") | |
gr.Markdown("### Make sure that the sampling overlap value is less than sampling resolution value") | |
input_sampling_overlap = gr.Slider(0, 1000, value=0, step=10, label="Sampling overlap in notes") | |
run_btn = gr.Button("compare", variant="primary") | |
gr.Markdown("## MIDI comparison results") | |
output_min_sim = gr.Number(label="Minimum similarity") | |
output_avg_sim = gr.Number(label="Average similarity") | |
output_max_sim = gr.Number(label="Maximum similarity") | |
output_src_audio = gr.Audio(label="Source MIDI audio", format="mp3", elem_id="midi_audio") | |
output_src_plot = gr.Plot(label="Source MIDI plot") | |
output_trg_audio = gr.Audio(label="Target MIDI audio", format="mp3", elem_id="midi_audio") | |
output_trg_plot = gr.Plot(label="Target MIDI plot") | |
run_event = run_btn.click(CompareMIDIs, [input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap], | |
[output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim]) | |
gr.Examples( | |
[ | |
["Honesty.kar", "Hotel California.mid", 200, 0], | |
["House Of The Rising Sun.mid", "Nothing Else Matters.kar", 200, 0], | |
["Deep Relaxation Melody #6.mid", "Deep Relaxation Melody #8.mid", 200, 0], | |
["I Just Called To Say I Love You.mid", "Sharing The Night Together.kar", 200, 0], | |
], | |
[input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap], | |
[output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim], | |
CompareMIDIs, | |
cache_examples=True, | |
) | |
app.queue().launch() |