Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,869 Bytes
b2efcdc 8f9fe72 9d6df26 5ef7697 9d6df26 1f361d5 b41bffa 9d6df26 5ef7697 1b82c07 5ef7697 9d6df26 b2efcdc 9d6df26 65d99ea 9d6df26 65d99ea 9d6df26 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 65d99ea 62cfc69 b2efcdc 7019974 64feaa4 7019974 b2efcdc bac0956 b2efcdc 9d6df26 b2efcdc bac0956 b2efcdc bac0956 b2efcdc bac0956 b2efcdc 48a1204 b2efcdc 48a1204 9d6df26 48a1204 9d6df26 48a1204 28d2673 48a1204 28d2673 b2efcdc 28d2673 763c372 4de4865 48a1204 748caed 763c372 48a1204 763c372 48a1204 8d8dd3b 48a1204 d46af9a 9d6df26 d46af9a 9d6df26 28d2673 64feaa4 9d6df26 f5827f3 9d6df26 f5827f3 9d6df26 d46af9a 9d6df26 c28bd62 9d6df26 c28bd62 28d2673 9d6df26 28d2673 9d6df26 c28bd62 8d8dd3b c28bd62 70bf766 c28bd62 70bf766 8d8dd3b 9d6df26 8d8dd3b 9d6df26 9242953 9d6df26 d46af9a 9d6df26 165385c 9d6df26 165385c 9242953 d46af9a 9d6df26 9242953 54c624f 9d6df26 9242953 d46af9a 9242953 9d6df26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
# https://huggingface.co/spaces/asigalov61/Intelligent-MIDI-Comparator
import os.path
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import numpy as np
from scipy.interpolate import make_interp_spline
import matplotlib.pyplot as plt
from sklearn.metrics import pairwise
# =================================================================================================
def hsv_to_rgb(h, s, v):
if s == 0.0:
return v, v, v
i = int(h*6.0)
f = (h*6.0) - i
p = v*(1.0 - s)
q = v*(1.0 - s*f)
t = v*(1.0 - s*(1.0-f))
i = i%6
return [(v, t, p), (q, v, p), (p, v, t), (p, q, v), (t, p, v), (v, p, q)][i]
def generate_colors(n):
return [hsv_to_rgb(i/n, 1, 1) for i in range(n)]
def add_arrays(a, b):
return [sum(pair) for pair in zip(a, b)]
def plot_ms_SONG(ms_song,
preview_length_in_notes=0,
block_lines_times_list = None,
plot_title='ms Song',
max_num_colors=129,
drums_color_num=128,
plot_size=(11,4),
note_height = 0.75,
show_grid_lines=False,
return_plt = False,
timings_multiplier=1,
plot_curve_values=None,
save_plot=''
):
'''Tegridy ms SONG plotter/vizualizer'''
notes = [s for s in ms_song if s[0] == 'note']
if (len(max(notes, key=len)) != 7) and (len(min(notes, key=len)) != 7):
print('The song notes do not have patches information')
print('Please add patches to the notes in the song')
else:
start_times = [(s[1] * timings_multiplier) / 1000 for s in notes]
durations = [(s[2] * timings_multiplier) / 1000 for s in notes]
pitches = [s[4] for s in notes]
patches = [s[6] for s in notes]
colors = generate_colors(max_num_colors)
colors[drums_color_num] = (1, 1, 1)
pbl = (notes[preview_length_in_notes][1] * timings_multiplier) / 1000
fig, ax = plt.subplots(figsize=plot_size)
# Create a rectangle for each note with color based on patch number
for start, duration, pitch, patch in zip(start_times, durations, pitches, patches):
rect = plt.Rectangle((start, pitch), duration, note_height, facecolor=colors[patch])
ax.add_patch(rect)
if plot_curve_values is not None:
min_val = min(plot_curve_values)
max_val = max(plot_curve_values)
spcva = [((value - min_val) / (max(max_val - min_val, 0.00001))) * 100 for value in plot_curve_values]
mult = int(math.ceil(max(add_arrays(start_times, durations)) / len(spcva)))
pcv = [value for value in spcva for _ in range(mult)][:int(max(add_arrays(start_times, durations)))+mult]
x = np.arange(len(pcv))
x_smooth = np.linspace(x.min(), x.max(), 300)
spl = make_interp_spline(x, pcv, k=3)
y_smooth = spl(x_smooth)
ax.plot(x_smooth, y_smooth, color='white')
# Set the limits of the plot
ax.set_xlim([min(start_times), max(add_arrays(start_times, durations))])
ax.set_ylim([min(y_smooth), max(y_smooth)])
# Set the background color to black
ax.set_facecolor('black')
fig.patch.set_facecolor('white')
if preview_length_in_notes > 0:
ax.axvline(x=pbl, c='white')
if block_lines_times_list:
for bl in block_lines_times_list:
ax.axvline(x=bl, c='white')
if show_grid_lines:
ax.grid(color='white')
plt.xlabel('Time (s)', c='black')
plt.ylabel('MIDI Pitch', c='black')
plt.title(plot_title)
if return_plt:
return fig
if save_plot == '':
plt.show()
else:
plt.savefig(save_plot)
# =================================================================================================
def read_MIDI(input_midi):
#===============================================================================
raw_score = TMIDIX.midi2single_track_ms_score(input_midi)
#===============================================================================
# Enhanced score notes
events_matrix1 = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
#=======================================================
# PRE-PROCESSING
instruments_list = list(set([y[3] for y in events_matrix1]))
#======================================
events_matrix1 = TMIDIX.augment_enhanced_score_notes(events_matrix1, timings_divider=16)
#=======================================================
# FINAL PROCESSING
melody_chords = []
melody_chords2 = []
# Break between compositions / Intro seq
if 9 in instruments_list:
drums_present = 19331 # Yes
else:
drums_present = 19330 # No
if events_matrix1[0][3] != 9:
pat = events_matrix1[0][6]
else:
pat = 128
melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
abs_time = 0
pbar_time = 0
pe = events_matrix1[0]
chords_counter = 1
comp_chords_len = len(list(set([y[1] for y in events_matrix1])))
for e in events_matrix1:
#=======================================================
# Timings...
# Cliping all values...
delta_time = max(0, min(255, e[1]-pe[1]))
# Durations and channels
dur = max(0, min(255, e[2]))
cha = max(0, min(15, e[3]))
# Patches
if cha == 9: # Drums patch will be == 128
pat = 128
else:
pat = e[6]
# Pitches
ptc = max(1, min(127, e[4]))
# Velocities
# Calculating octo-velocity
vel = max(8, min(127, e[5]))
velocity = round(vel / 15)-1
#=======================================================
# FINAL NOTE SEQ
# Writing final note asynchronously
dur_vel = (8 * dur) + velocity
pat_ptc = (129 * pat) + ptc
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304])
pe = e
return melody_chords, melody_chords2
# =================================================================================================
def tokens_to_MIDI(tokens, MIDI_name):
print('Rendering results...')
print('=' * 70)
print('Sample INTs', tokens[:12])
print('=' * 70)
if len(tokens) != 0:
song = tokens
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [-1] * 16
channels = [0] * 16
channels[9] = 1
for ss in song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 2304:
dur = ((ss-256) // 8) * 16
vel = (((ss-256) % 8)+1) * 15
if 2304 <= ss < 18945:
patch = (ss-2304) // 129
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-2304) % 129
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
patches = [0 if x==-1 else x for x in patches]
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Intelligent MIDI Comparator',
output_file_name = MIDI_name,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = MIDI_name+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
return new_fn, song_f, audio
# =================================================================================================
@spaces.GPU
def CompareMIDIs(input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('Loading model...')
SEQ_LEN = 8192 # Models seq len
PAD_IDX = 19463 # Models pad index
DEVICE = 'cuda' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 32, heads = 32, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Giant_Music_Transformer_Large_Trained_Model_36074_steps_0.3067_loss_0.927_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
sfn = os.path.basename(input_src_midi.name)
sfn1 = sfn.split('.')[0]
tfn = os.path.basename(input_trg_midi.name)
tfn1 = tfn.split('.')[0]
print('-' * 70)
print('Input src MIDI name:', sfn)
print('Input trg MIDI name:', tfn)
print('Req sampling resolution:', input_sampling_resolution)
print('Req sampling overlap:', input_sampling_overlap)
print('-' * 70)
#===============================================================================
print('Loading MIDIs...')
src_tokens, src_notes = read_MIDI(input_src_midi.name)
trg_tokens, trg_notes = read_MIDI(input_trg_midi.name)
#==================================================================
print('=' * 70)
print('Number of src tokens:', len(src_tokens))
print('Number of src notes:', len(src_notes))
print('Number of trg tokens:', len(trg_tokens))
print('Number of trg notes:', len(trg_notes))
#==========================================================================
print('=' * 70)
print('Comparing...')
print('=' * 70)
print('Giant Music Transformer MIDI Comparator')
print('=' * 70)
sampling_resolution = max(40, min(1000, input_sampling_resolution)) * 3
sampling_overlap = max(0, min(500, input_sampling_overlap)) * 3
comp_length = (min(len(src_tokens), len(trg_tokens)) // sampling_resolution) * sampling_resolution
input_src_tokens = src_tokens[:comp_length]
input_trg_tokens = trg_tokens[:comp_length]
comp_cos_sims = []
for i in range(0, comp_length, max(1, sampling_resolution-sampling_overlap)):
torch.cuda.empty_cache()
inp = [input_src_tokens[i:i+sampling_resolution]]
inp = torch.LongTensor(inp).cuda()
with ctx:
out = model(inp)
cache = out[2]
src_embedings = cache.layer_hiddens[-1]
torch.cuda.empty_cache()
inp = [input_trg_tokens[i:i+sampling_resolution]]
inp = torch.LongTensor(inp).cuda()
with ctx:
with torch.no_grad():
out = model(inp)
cache = out[2]
trg_embedings = cache.layer_hiddens[-1]
cos_sim = pairwise.cosine_similarity([src_embedings.cpu().detach().numpy()[0].flatten()],
[trg_embedings.cpu().detach().numpy()[0].flatten()]
).tolist()[0][0]
comp_cos_sims.append(cos_sim)
output_min_sim = min(comp_cos_sims)
output_avg_sim = sum(comp_cos_sims) / len(comp_cos_sims)
output_max_sim = max(comp_cos_sims)
print('Min sim:', output_min_sim)
print('Avg sim:', output_avg_sim)
print('max sim:', output_max_sim)
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
sname, ssong_f, saudio = tokens_to_MIDI(src_tokens[:comp_length], sfn1)
tname, tsong_f, taudio = tokens_to_MIDI(trg_tokens[:comp_length], tfn1)
#========================================================
output_src_audio = (16000, saudio)
output_src_plot = plot_ms_SONG(ssong_f, plot_title=sfn1, plot_curve_values=comp_cos_sims, return_plt=True)
output_trg_audio = (16000, taudio)
output_trg_plot = plot_ms_SONG(tsong_f, plot_title=tfn1, plot_curve_values=comp_cos_sims, return_plt=True)
print('Done!')
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Intelligent MIDI Comparator</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Intelligent comparison of any pair of MIDIs</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Intelligent-MIDI-Comparator&style=flat)\n\n"
"This is a demo for the Giant Music Transformer\n\n"
"Check out [Giant Music Transformer](https://github.com/asigalov61/Giant-Music-Transformer) on GitHub!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb)"
" for all features, faster execution and endless generation"
)
gr.Markdown("## Upload your MIDIs or select a sample example below")
gr.Markdown("## Upload source MIDI")
input_src_midi = gr.File(label="Source MIDI", file_types=[".midi", ".mid", ".kar"])
gr.Markdown("## Upload target MIDI")
input_trg_midi = gr.File(label="Target MIDI", file_types=[".midi", ".mid", ".kar"])
gr.Markdown("### Make sure that the MIDI has at least sampling resolution number of notes")
input_sampling_resolution = gr.Slider(40, 1000, value=40, step=1, label="Sampling resolution in notes")
gr.Markdown("### Make sure that the sampling overlap value is less than sampling resolution value")
input_sampling_overlap = gr.Slider(0, 500, value=0, step=1, label="Sampling overlap in notes")
run_btn = gr.Button("compare", variant="primary")
gr.Markdown("## MIDI comparison results")
output_min_sim = gr.Number(label="Minimum similarity")
output_avg_sim = gr.Number(label="Average similarity")
output_max_sim = gr.Number(label="Maximum similarity")
output_src_audio = gr.Audio(label="Source MIDI audio", format="mp3", elem_id="midi_audio")
output_src_plot = gr.Plot(label="Source MIDI plot")
output_trg_audio = gr.Audio(label="Target MIDI audio", format="mp3", elem_id="midi_audio")
output_trg_plot = gr.Plot(label="Target MIDI plot")
run_event = run_btn.click(CompareMIDIs, [input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap],
[output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim])
gr.Examples(
[
["Honesty.kar", "Hotel California.mid", 200, 0],
["House Of The Rising Sun.mid", "Nothing Else Matters.kar", 200, 0],
["Deep Relaxation Melody #6.mid", "Deep Relaxation Melody #8.mid", 200, 0],
["I Just Called To Say I Love You.mid", "Sharing The Night Together.kar", 200, 0],
],
[input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap],
[output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim],
CompareMIDIs,
cache_examples=True,
)
app.queue().launch() |