Spaces:
Running
on
Zero
Running
on
Zero
asigalov61
commited on
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#==================================================================================
|
2 |
+
|
3 |
+
print('=' * 70)
|
4 |
+
print('Loading core Giant Music Transformer modules...')
|
5 |
+
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
|
9 |
+
print('=' * 70)
|
10 |
+
print('Loading main Giant Music Transformer modules...')
|
11 |
+
|
12 |
+
os.environ['USE_FLASH_ATTENTION'] = '1'
|
13 |
+
|
14 |
+
import torch
|
15 |
+
|
16 |
+
torch.set_float32_matmul_precision('high')
|
17 |
+
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
18 |
+
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
19 |
+
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
20 |
+
torch.backends.cuda.enable_math_sdp(True)
|
21 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
22 |
+
torch.backends.cuda.enable_cudnn_sdp(True)
|
23 |
+
|
24 |
+
os.chdir('/home/ubuntu/Giant-Music-Transformer/')
|
25 |
+
print("Current working directory: ", os.getcwd())
|
26 |
+
sys.path.append(os.getcwd())
|
27 |
+
import TMIDIX
|
28 |
+
|
29 |
+
from midi_to_colab_audio import midi_to_colab_audio
|
30 |
+
|
31 |
+
from x_transformer_1_23_2 import *
|
32 |
+
|
33 |
+
import random
|
34 |
+
|
35 |
+
os.chdir('/home/ubuntu/')
|
36 |
+
print('=' * 70)
|
37 |
+
print('Loading aux Giant Music Transformer modules...')
|
38 |
+
|
39 |
+
import matplotlib.pyplot as plt
|
40 |
+
|
41 |
+
import gradio as gr
|
42 |
+
|
43 |
+
print('=' * 70)
|
44 |
+
print('PyTorch version:', torch.__version__)
|
45 |
+
print('=' * 70)
|
46 |
+
print('Done!')
|
47 |
+
print('Enjoy! :)')
|
48 |
+
print('=' * 70)
|
49 |
+
|
50 |
+
#==================================================================================
|
51 |
+
|
52 |
+
print('=' * 70)
|
53 |
+
print('Instantiating model...')
|
54 |
+
|
55 |
+
device_type = 'cuda'
|
56 |
+
dtype = 'bfloat16'
|
57 |
+
|
58 |
+
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
59 |
+
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
60 |
+
|
61 |
+
SEQ_LEN = 8192
|
62 |
+
PAD_IDX = 19463
|
63 |
+
|
64 |
+
model = TransformerWrapper(
|
65 |
+
num_tokens = PAD_IDX+1,
|
66 |
+
max_seq_len = SEQ_LEN,
|
67 |
+
attn_layers = Decoder(dim = 2048,
|
68 |
+
depth = 8,
|
69 |
+
heads = 32,
|
70 |
+
rotary_pos_emb = True,
|
71 |
+
attn_flash = True
|
72 |
+
)
|
73 |
+
)
|
74 |
+
|
75 |
+
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
76 |
+
|
77 |
+
print('=' * 70)
|
78 |
+
print('Loading model checkpoint...')
|
79 |
+
|
80 |
+
model_path = '/home/ubuntu/Giant-Music-Transformer/Models/Medium/Giant_Music_Transformer_Medium_Trained_Model_10446_steps_0.7202_loss_0.8233_acc.pth'
|
81 |
+
|
82 |
+
model.load_state_dict(torch.load(model_path))
|
83 |
+
|
84 |
+
print('=' * 70)
|
85 |
+
|
86 |
+
model.cuda()
|
87 |
+
model.eval()
|
88 |
+
|
89 |
+
print('Done!')
|
90 |
+
print('=' * 70)
|
91 |
+
print('Model will use', dtype, 'precision...')
|
92 |
+
print('=' * 70)
|
93 |
+
|
94 |
+
#==================================================================================
|
95 |
+
|
96 |
+
SOUDFONT_PATH = '/usr/share/sounds/sf2/FluidR3_GM.sf2'
|
97 |
+
|
98 |
+
NUM_OUT_BATCHES = 8
|
99 |
+
|
100 |
+
#==================================================================================
|
101 |
+
|
102 |
+
def load_midi(input_midi):
|
103 |
+
|
104 |
+
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
|
105 |
+
|
106 |
+
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)
|
107 |
+
|
108 |
+
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=16)
|
109 |
+
|
110 |
+
instruments_list = list(set([y[6] for y in escore_notes]))
|
111 |
+
|
112 |
+
#=======================================================
|
113 |
+
# FINAL PROCESSING
|
114 |
+
#=======================================================
|
115 |
+
|
116 |
+
melody_chords = []
|
117 |
+
|
118 |
+
# Break between compositions / Intro seq
|
119 |
+
|
120 |
+
if 128 in instruments_list:
|
121 |
+
drums_present = 19331 # Yes
|
122 |
+
else:
|
123 |
+
drums_present = 19330 # No
|
124 |
+
|
125 |
+
pat = escore_notes[0][6]
|
126 |
+
|
127 |
+
melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq
|
128 |
+
|
129 |
+
#=======================================================
|
130 |
+
# MAIN PROCESSING CYCLE
|
131 |
+
#=======================================================
|
132 |
+
|
133 |
+
pe = escore_notes[0]
|
134 |
+
|
135 |
+
for e in escore_notes:
|
136 |
+
|
137 |
+
#=======================================================
|
138 |
+
# Timings...
|
139 |
+
|
140 |
+
# Cliping all values...
|
141 |
+
delta_time = max(0, min(255, e[1]-pe[1]))
|
142 |
+
|
143 |
+
# Durations and channels
|
144 |
+
|
145 |
+
dur = max(0, min(255, e[2]))
|
146 |
+
cha = max(0, min(15, e[3]))
|
147 |
+
|
148 |
+
# Patches
|
149 |
+
if cha == 9: # Drums patch will be == 128
|
150 |
+
pat = 128
|
151 |
+
|
152 |
+
else:
|
153 |
+
pat = e[6]
|
154 |
+
|
155 |
+
# Pitches
|
156 |
+
|
157 |
+
ptc = max(1, min(127, e[4]))
|
158 |
+
|
159 |
+
# Velocities
|
160 |
+
|
161 |
+
# Calculating octo-velocity
|
162 |
+
vel = max(8, min(127, e[5]))
|
163 |
+
velocity = round(vel / 15)-1
|
164 |
+
|
165 |
+
#=======================================================
|
166 |
+
# FINAL NOTE SEQ
|
167 |
+
#=======================================================
|
168 |
+
|
169 |
+
# Writing final note asynchronously
|
170 |
+
|
171 |
+
dur_vel = (8 * dur) + velocity
|
172 |
+
pat_ptc = (129 * pat) + ptc
|
173 |
+
|
174 |
+
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
|
175 |
+
|
176 |
+
pe = e
|
177 |
+
|
178 |
+
return melody_chords
|
179 |
+
|
180 |
+
#==================================================================================
|
181 |
+
|
182 |
+
def save_midi(tokens, batch_number=None):
|
183 |
+
|
184 |
+
song = tokens
|
185 |
+
song_f = []
|
186 |
+
|
187 |
+
time = 0
|
188 |
+
dur = 0
|
189 |
+
vel = 90
|
190 |
+
pitch = 0
|
191 |
+
channel = 0
|
192 |
+
|
193 |
+
patches = [-1] * 16
|
194 |
+
|
195 |
+
channels = [0] * 16
|
196 |
+
channels[9] = 1
|
197 |
+
|
198 |
+
for ss in song:
|
199 |
+
|
200 |
+
if 0 <= ss < 256:
|
201 |
+
|
202 |
+
time += ss * 16
|
203 |
+
|
204 |
+
if 256 <= ss < 2304:
|
205 |
+
|
206 |
+
dur = ((ss-256) // 8) * 16
|
207 |
+
vel = (((ss-256) % 8)+1) * 15
|
208 |
+
|
209 |
+
if 2304 <= ss < 18945:
|
210 |
+
|
211 |
+
patch = (ss-2304) // 129
|
212 |
+
|
213 |
+
if patch < 128:
|
214 |
+
|
215 |
+
if patch not in patches:
|
216 |
+
if 0 in channels:
|
217 |
+
cha = channels.index(0)
|
218 |
+
channels[cha] = 1
|
219 |
+
else:
|
220 |
+
cha = 15
|
221 |
+
|
222 |
+
patches[cha] = patch
|
223 |
+
channel = patches.index(patch)
|
224 |
+
else:
|
225 |
+
channel = patches.index(patch)
|
226 |
+
|
227 |
+
if patch == 128:
|
228 |
+
channel = 9
|
229 |
+
|
230 |
+
pitch = (ss-2304) % 129
|
231 |
+
|
232 |
+
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
|
233 |
+
|
234 |
+
patches = [0 if x==-1 else x for x in patches]
|
235 |
+
|
236 |
+
if batch_number == None:
|
237 |
+
fname = '/home/ubuntu/Giant-Music-Transformer-Music-Composition'
|
238 |
+
|
239 |
+
else:
|
240 |
+
fname = '/home/ubuntu/Giant-Music-Transformer-Music-Composition_'+str(batch_number)
|
241 |
+
|
242 |
+
data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
|
243 |
+
output_signature = 'Giant Music Transformer',
|
244 |
+
output_file_name = fname,
|
245 |
+
track_name='Project Los Angeles',
|
246 |
+
list_of_MIDI_patches=patches,
|
247 |
+
verbose=False
|
248 |
+
)
|
249 |
+
|
250 |
+
return song_f
|
251 |
+
|
252 |
+
#==================================================================================
|
253 |
+
|
254 |
+
def generate_music(prime,
|
255 |
+
num_gen_tokens,
|
256 |
+
num_gen_batches,
|
257 |
+
gen_outro,
|
258 |
+
gen_drums,
|
259 |
+
model_temperature,
|
260 |
+
model_sampling_top_p
|
261 |
+
):
|
262 |
+
|
263 |
+
if not prime:
|
264 |
+
inputs = [19461]
|
265 |
+
|
266 |
+
else:
|
267 |
+
inputs = prime
|
268 |
+
|
269 |
+
if gen_outro:
|
270 |
+
inputs.extend([18945])
|
271 |
+
|
272 |
+
if gen_drums:
|
273 |
+
drums = [36, 38]
|
274 |
+
drum_pitch = random.choice(drums)
|
275 |
+
inputs.extend([0, ((8*8)+6)+256, ((128*129)+drum_pitch)+2304])
|
276 |
+
|
277 |
+
torch.cuda.empty_cache()
|
278 |
+
|
279 |
+
inp = [inputs] * num_gen_batches
|
280 |
+
|
281 |
+
inp = torch.LongTensor(inp).cuda()
|
282 |
+
|
283 |
+
with ctx:
|
284 |
+
with torch.inference_mode():
|
285 |
+
out = model.generate(inp,
|
286 |
+
num_gen_tokens,
|
287 |
+
filter_logits_fn=top_p,
|
288 |
+
filter_kwargs={'thres': model_sampling_top_p},
|
289 |
+
temperature=model_temperature,
|
290 |
+
return_prime=False,
|
291 |
+
verbose=False)
|
292 |
+
|
293 |
+
output = out.tolist()
|
294 |
+
|
295 |
+
return output
|
296 |
+
|
297 |
+
#==================================================================================
|
298 |
+
|
299 |
+
final_composition = []
|
300 |
+
generated_batches = []
|
301 |
+
|
302 |
+
#==================================================================================
|
303 |
+
|
304 |
+
def generate_callback(input_midi,
|
305 |
+
num_prime_tokens,
|
306 |
+
num_gen_tokens,
|
307 |
+
gen_outro,
|
308 |
+
gen_drums,
|
309 |
+
model_temperature,
|
310 |
+
model_sampling_top_p
|
311 |
+
):
|
312 |
+
|
313 |
+
global generated_batches
|
314 |
+
generated_batches = []
|
315 |
+
|
316 |
+
if not final_composition and input_midi is not None:
|
317 |
+
final_composition.extend(load_midi(input_midi)[:num_prime_tokens])
|
318 |
+
|
319 |
+
batched_gen_tokens = generate_music(final_composition,
|
320 |
+
num_gen_tokens,
|
321 |
+
NUM_OUT_BATCHES,
|
322 |
+
gen_outro,
|
323 |
+
gen_drums,
|
324 |
+
model_temperature,
|
325 |
+
model_sampling_top_p
|
326 |
+
)
|
327 |
+
|
328 |
+
outputs = []
|
329 |
+
|
330 |
+
for i in range(len(batched_gen_tokens)):
|
331 |
+
|
332 |
+
tokens = batched_gen_tokens[i]
|
333 |
+
|
334 |
+
# Save MIDI to a temporary file
|
335 |
+
midi_score = save_midi(tokens, i)
|
336 |
+
|
337 |
+
# MIDI plot
|
338 |
+
midi_plot = TMIDIX.plot_ms_SONG(midi_score, plot_title='Batch # ' + str(i), return_plt=True)
|
339 |
+
|
340 |
+
# File name
|
341 |
+
fname = '/home/ubuntu/Giant-Music-Transformer-Music-Composition_'+str(i)
|
342 |
+
|
343 |
+
# Save audio to a temporary file
|
344 |
+
midi_audio = midi_to_colab_audio(fname + '.mid',
|
345 |
+
soundfont_path=SOUDFONT_PATH,
|
346 |
+
sample_rate=16000,
|
347 |
+
output_for_gradio=True
|
348 |
+
)
|
349 |
+
|
350 |
+
outputs.append(((16000, midi_audio), midi_plot, tokens))
|
351 |
+
|
352 |
+
return outputs
|
353 |
+
|
354 |
+
#==================================================================================
|
355 |
+
|
356 |
+
def generate_callback_wrapper(input_midi,
|
357 |
+
num_prime_tokens,
|
358 |
+
num_gen_tokens,
|
359 |
+
gen_outro,
|
360 |
+
gen_drums,
|
361 |
+
model_temperature,
|
362 |
+
model_sampling_top_p
|
363 |
+
):
|
364 |
+
|
365 |
+
result = generate_callback(input_midi,
|
366 |
+
num_prime_tokens,
|
367 |
+
num_gen_tokens,
|
368 |
+
gen_outro,
|
369 |
+
gen_drums,
|
370 |
+
model_temperature,
|
371 |
+
model_sampling_top_p
|
372 |
+
)
|
373 |
+
|
374 |
+
generated_batches.extend([sublist[2] for sublist in result])
|
375 |
+
|
376 |
+
return tuple(item for sublist in result for item in sublist[:2])
|
377 |
+
|
378 |
+
#==================================================================================
|
379 |
+
|
380 |
+
def add_batch(batch_number):
|
381 |
+
|
382 |
+
final_composition.extend(generated_batches[batch_number])
|
383 |
+
|
384 |
+
# Save MIDI to a temporary file
|
385 |
+
midi_score = save_midi(final_composition)
|
386 |
+
|
387 |
+
# MIDI plot
|
388 |
+
midi_plot = TMIDIX.plot_ms_SONG(midi_score, plot_title='Giant Music Transformer Composition', return_plt=True)
|
389 |
+
|
390 |
+
# File name
|
391 |
+
fname = 'Giant-Music-Transformer-Music-Composition'
|
392 |
+
|
393 |
+
# Save audio to a temporary file
|
394 |
+
midi_audio = midi_to_colab_audio(fname + '.mid',
|
395 |
+
soundfont_path=SOUDFONT_PATH,
|
396 |
+
sample_rate=16000,
|
397 |
+
output_for_gradio=True
|
398 |
+
)
|
399 |
+
|
400 |
+
return (16000, midi_audio), midi_plot, fname+'.mid'
|
401 |
+
|
402 |
+
#==================================================================================
|
403 |
+
|
404 |
+
def remove_batch(batch_number, num_tokens):
|
405 |
+
|
406 |
+
global final_composition
|
407 |
+
|
408 |
+
if len(final_composition) > num_tokens:
|
409 |
+
final_composition = final_composition[:-num_tokens]
|
410 |
+
|
411 |
+
# Save MIDI to a temporary file
|
412 |
+
midi_score = save_midi(final_composition)
|
413 |
+
|
414 |
+
# MIDI plot
|
415 |
+
midi_plot = TMIDIX.plot_ms_SONG(midi_score, plot_title='Giant Music Transformer Composition', return_plt=True)
|
416 |
+
|
417 |
+
# File name
|
418 |
+
fname = 'Giant-Music-Transformer-Music-Composition'
|
419 |
+
|
420 |
+
# Save audio to a temporary file
|
421 |
+
midi_audio = midi_to_colab_audio(fname + '.mid',
|
422 |
+
soundfont_path=SOUDFONT_PATH,
|
423 |
+
sample_rate=16000,
|
424 |
+
output_for_gradio=True
|
425 |
+
)
|
426 |
+
|
427 |
+
return (16000, midi_audio), midi_plot, fname+'.mid'
|
428 |
+
|
429 |
+
#==================================================================================
|
430 |
+
|
431 |
+
def reset():
|
432 |
+
global final_composition
|
433 |
+
final_composition = []
|
434 |
+
|
435 |
+
#==================================================================================
|
436 |
+
|
437 |
+
with gr.Blocks() as demo:
|
438 |
+
|
439 |
+
gr.Markdown("## Upload your MIDI or select a sample example MIDI")
|
440 |
+
|
441 |
+
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
|
442 |
+
clear_btn = gr.ClearButton(input_midi, variant="stop", value="Reset")
|
443 |
+
|
444 |
+
clear_btn.click(reset)
|
445 |
+
|
446 |
+
gr.Markdown("## Generate")
|
447 |
+
|
448 |
+
num_prime_tokens = gr.Slider(15, 6999, value=600, step=3, label="Number of prime tokens")
|
449 |
+
num_gen_tokens = gr.Slider(15, 1200, value=600, step=3, label="Number of tokens to generate")
|
450 |
+
gen_outro = gr.Checkbox(value=False, label="Try to generate an outro")
|
451 |
+
gen_drums = gr.Checkbox(value=False, label="Try to introduce drums")
|
452 |
+
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
|
453 |
+
model_sampling_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value")
|
454 |
+
|
455 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
456 |
+
|
457 |
+
gr.Markdown("## Select batch")
|
458 |
+
|
459 |
+
outputs = []
|
460 |
+
|
461 |
+
for i in range(NUM_OUT_BATCHES):
|
462 |
+
with gr.Tab(f"Batch # {i}") as tab:
|
463 |
+
|
464 |
+
audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3", elem_id="midi_audio")
|
465 |
+
plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot")
|
466 |
+
|
467 |
+
outputs.extend([audio_output, plot_output])
|
468 |
+
|
469 |
+
generate_btn.click(generate_callback_wrapper,
|
470 |
+
[input_midi,
|
471 |
+
num_prime_tokens,
|
472 |
+
num_gen_tokens,
|
473 |
+
gen_outro,
|
474 |
+
gen_drums,
|
475 |
+
model_temperature,
|
476 |
+
model_sampling_top_p
|
477 |
+
],
|
478 |
+
outputs
|
479 |
+
)
|
480 |
+
|
481 |
+
gr.Markdown("## Add/Remove batch")
|
482 |
+
|
483 |
+
batch_number = gr.Slider(0, NUM_OUT_BATCHES, value=0, step=1, label="Batch number to add/remove")
|
484 |
+
|
485 |
+
add_btn = gr.Button("Add batch", variant="primary")
|
486 |
+
remove_btn = gr.Button("Remove batch", variant="stop")
|
487 |
+
|
488 |
+
final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3", elem_id="midi_audio")
|
489 |
+
final_plot_output = gr.Plot(label="Final MIDI plot")
|
490 |
+
final_file_output = gr.File(label="Final MIDI file")
|
491 |
+
|
492 |
+
add_btn.click(add_batch, inputs=[batch_number],
|
493 |
+
outputs=[final_audio_output, final_plot_output, final_file_output]
|
494 |
+
)
|
495 |
+
|
496 |
+
remove_btn.click(remove_batch, inputs=[batch_number, num_gen_tokens],
|
497 |
+
outputs=[final_audio_output, final_plot_output, final_file_output]
|
498 |
+
)
|
499 |
+
|
500 |
+
demo.unload(lambda: print("User ended session."))
|
501 |
+
|
502 |
+
demo.launch(share=True)
|