Spaces:
Runtime error
Runtime error
File size: 13,946 Bytes
fc1422a 256f885 fc1422a 06b8dc2 fc1422a 06b8dc2 fc1422a 3f99ad2 256f885 fc1422a 3c5d93e 17c45fe 3c5d93e 256f885 3c5d93e fc1422a 7f3082d fc1422a 7f3082d fc1422a 7f3082d fc1422a 7f3082d d238a95 7f3082d fc1422a 7f3082d 4e30bd2 7f3082d fc1422a 7f3082d fc1422a 7f3082d fc1422a 7f3082d a533666 7f3082d fc1422a 7f3082d fc1422a 0f79926 8765df9 fc1422a 7f3082d fc1422a 7f3082d fc1422a 3c5d93e fc1422a 3c5d93e fc1422a 3c5d93e fc1422a 3c5d93e fc1422a 3c5d93e fc1422a 06b8dc2 fc1422a 06b8dc2 fc1422a 06b8dc2 fc1422a 06b8dc2 e0f9974 256f885 fc1422a 256f885 fc1422a 256f885 4b10226 256f885 06b8dc2 256f885 fc1422a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import os.path
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def GenerateAccompaniment(input_midi, input_num_tokens, input_conditioning_type, input_strip_notes):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('Loading model...')
SEQ_LEN = 8192 # Models seq len
PAD_IDX = 707 # Models pad index
DEVICE = 'cuda' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048, depth = 4, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Chords_Progressions_Transformer_Small_2048_Trained_Model_12947_steps_0.9316_loss_0.7386_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.float16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
input_num_tokens = max(4, min(128, input_num_tokens))
print('-' * 70)
print('Input file name:', fn)
print('Req num toks:', input_num_tokens)
print('Conditioning type:', input_conditioning_type)
print('Strip notes:', input_strip_notes)
print('-' * 70)
#===============================================================================
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
#===============================================================================
# Enhanced score notes
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
no_drums_escore_notes = [e for e in escore_notes if e[6] < 80]
if len(no_drums_escore_notes) > 0:
#=======================================================
# PRE-PROCESSING
#===============================================================================
# Augmented enhanced score notes
no_drums_escore_notes = TMIDIX.augment_enhanced_score_notes(no_drums_escore_notes)
cscore = TMIDIX.chordify_score([1000, no_drums_escore_notes])
clean_cscore = []
for c in cscore:
pitches = []
cho = []
for cc in c:
if cc[4] not in pitches:
cho.append(cc)
pitches.append(cc[4])
clean_cscore.append(cho)
#=======================================================
# FINAL PROCESSING
melody_chords = []
chords = []
times = [0]
durs = []
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
pe = clean_cscore[0][0]
first_chord = True
for c in clean_cscore:
# Chords
c.sort(key=lambda x: x[4], reverse=True)
tones_chord = sorted(set([cc[4] % 12 for cc in c]))
try:
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(tones_chord)
except:
checked_tones_chord = TMIDIX.check_and_fix_tones_chord(tones_chord)
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(checked_tones_chord)
melody_chords.extend([chord_token+384])
if input_strip_notes:
if len(tones_chord) > 1:
chords.extend([chord_token+384])
else:
chords.extend([chord_token+384])
if first_chord:
melody_chords.extend([0])
first_chord = False
for e in c:
#=======================================================
# Timings...
time = e[1]-pe[1]
dur = e[2]
if time != 0 and time % 2 != 0:
time += 1
if dur % 2 != 0:
dur += 1
delta_time = int(max(0, min(255, time)) / 2)
# Durations
dur = int(max(0, min(255, dur)) / 2)
# Pitches
ptc = max(1, min(127, e[4]))
#=======================================================
# FINAL NOTE SEQ
# Writing final note asynchronously
if delta_time != 0:
melody_chords.extend([delta_time, dur+128, ptc+256])
if input_strip_notes:
if len(c) > 1:
times.append(delta_time)
durs.append(dur+128)
else:
times.append(delta_time)
durs.append(dur+128)
else:
melody_chords.extend([dur+128, ptc+256])
pe = e
#==================================================================
print('=' * 70)
print('Sample output events', melody_chords[:5])
print('=' * 70)
print('Generating...')
output = []
max_chords_limit = 8
temperature=0.9
num_memory_tokens=4096
output = []
idx = 0
for c in chords[:input_num_tokens]:
output.append(c)
if input_conditioning_type == 'Chords-Times' or input_conditioning_type == 'Chords-Times-Durations':
output.append(times[idx])
if input_conditioning_type == 'Chords-Times-Durations':
output.append(durs[idx])
x = torch.tensor([output] * 1, dtype=torch.long, device='cuda')
o = 0
ncount = 0
while o < 384 and ncount < max_chords_limit:
with ctx:
out = model.generate(x[-num_memory_tokens:],
1,
temperature=temperature,
return_prime=False,
verbose=False)
o = out.tolist()[0][0]
if 256 <= o < 384:
ncount += 1
if o < 384:
x = torch.cat((x, out), 1)
outy = x.tolist()[0][len(output):]
output.extend(outy)
idx += 1
if idx == len(chords[:input_num_tokens])-1:
break
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', output[:12])
print('=' * 70)
out1 = output
if len(out1) != 0:
song = out1
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [0] * 16
channel = 0
for ss in song:
if 0 <= ss < 128:
time += ss * 32
if 128 <= ss < 256:
dur = (ss-128) * 32
if 256 <= ss < 384:
pitch = (ss-256)
vel = max(40, pitch)
song_f.append(['note', time, dur, channel, pitch, vel, 0])
fn1 = "Chords-Progressions-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Chords Progressions Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', '')
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Chords Progressions Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Chords-conditioned music transformer</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Chords-Progressions-Transformer&style=flat)\n\n"
"Generate music based on chords progressions\n\n"
"Check out [Chords Progressions Transformer](https://github.com/asigalov61/Chords-Progressions-Transformer) on GitHub!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Chords-Progressions-Transformer/blob/main/Chords_Progressions_Transformer.ipynb)"
" for faster execution and endless generation"
)
gr.Markdown("## Upload your MIDI or select a sample example MIDI")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_num_tokens = gr.Slider(4, 128, value=32, step=1, label="Number of composition chords to generate progression for")
input_conditioning_type = gr.Radio(["Chords", "Chords-Times", "Chords-Times-Durations"], value="Chords", label="Conditioning type")
input_strip_notes = gr.Checkbox(label="Strip notes from the composition")
run_btn = gr.Button("generate", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(GenerateAccompaniment, [input_midi, input_num_tokens, input_conditioning_type, input_strip_notes],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
gr.Examples(
[["Chords-Progressions-Transformer-Piano-Seed-1.mid", 128, "Chords", False],
["Chords-Progressions-Transformer-Piano-Seed-2.mid", 128, "Chords-Times", False],
["Chords-Progressions-Transformer-Piano-Seed-3.mid", 128, "Chords-Times-Durations", False],
["Chords-Progressions-Transformer-Piano-Seed-4.mid", 128, "Chords", False],
["Chords-Progressions-Transformer-Piano-Seed-5.mid", 128, "Chords-Times", False],
["Chords-Progressions-Transformer-Piano-Seed-6.mid", 128, "Chords-Times-Durations", False],
["Chords-Progressions-Transformer-MI-Seed-1.mid", 128, "Chords", False],
["Chords-Progressions-Transformer-MI-Seed-2.mid", 128, "Chords-Times", False],
["Chords-Progressions-Transformer-MI-Seed-3.mid", 128, "Chords-Times-Durations", False],
["Chords-Progressions-Transformer-MI-Seed-4.mid", 128, "Chords-Times", False],
["Chords-Progressions-Transformer-MI-Seed-5.mid", 128, "Chords", False],
["Chords-Progressions-Transformer-MI-Seed-6.mid", 128, "Chords-Times-Durations", False]
],
[input_midi, input_num_tokens, input_conditioning_type, input_strip_notes],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
GenerateAccompaniment,
cache_examples=True,
)
app.queue().launch() |