Spaces:
Sleeping
Sleeping
import logging | |
import numpy as np | |
import torch | |
from collections import defaultdict | |
from utils.utils import MergeLayer | |
from modules.memory import Memory | |
from modules.message_aggregator import get_message_aggregator | |
from modules.message_function import get_message_function | |
from modules.memory_updater import get_memory_updater | |
from modules.embedding_module import get_embedding_module | |
from model.time_encoding import TimeEncode | |
class TGN(torch.nn.Module): | |
def __init__(self, neighbor_finder, node_features, edge_features, device, n_layers=2, | |
n_heads=2, dropout=0.1, use_memory=False, | |
memory_update_at_start=True, message_dimension=100, | |
memory_dimension=500, embedding_module_type="graph_attention", | |
message_function="mlp", | |
mean_time_shift_src=0, std_time_shift_src=1, mean_time_shift_dst=0, | |
std_time_shift_dst=1, n_neighbors=None, aggregator_type="last", | |
memory_updater_type="gru", | |
use_destination_embedding_in_message=False, | |
use_source_embedding_in_message=False, | |
dyrep=False): | |
super(TGN, self).__init__() | |
self.n_layers = n_layers | |
self.neighbor_finder = neighbor_finder | |
self.device = device | |
self.logger = logging.getLogger(__name__) | |
self.node_raw_features = torch.from_numpy(node_features.astype(np.float32)).to(device) | |
self.edge_raw_features = torch.from_numpy(edge_features.astype(np.float32)).to(device) | |
self.n_node_features = self.node_raw_features.shape[1] | |
self.n_nodes = self.node_raw_features.shape[0] | |
self.n_edge_features = self.edge_raw_features.shape[1] | |
self.embedding_dimension = self.n_node_features | |
self.n_neighbors = n_neighbors | |
self.embedding_module_type = embedding_module_type | |
self.use_destination_embedding_in_message = use_destination_embedding_in_message | |
self.use_source_embedding_in_message = use_source_embedding_in_message | |
self.dyrep = dyrep | |
self.use_memory = use_memory | |
self.time_encoder = TimeEncode(dimension=self.n_node_features) | |
self.memory = None | |
self.mean_time_shift_src = mean_time_shift_src | |
self.std_time_shift_src = std_time_shift_src | |
self.mean_time_shift_dst = mean_time_shift_dst | |
self.std_time_shift_dst = std_time_shift_dst | |
if self.use_memory: | |
self.memory_dimension = memory_dimension | |
self.memory_update_at_start = memory_update_at_start | |
raw_message_dimension = 2 * self.memory_dimension + self.n_edge_features + \ | |
self.time_encoder.dimension | |
message_dimension = message_dimension if message_function != "identity" else raw_message_dimension | |
self.memory = Memory(n_nodes=self.n_nodes, | |
memory_dimension=self.memory_dimension, | |
input_dimension=message_dimension, | |
message_dimension=message_dimension, | |
device=device) | |
self.message_aggregator = get_message_aggregator(aggregator_type=aggregator_type, | |
device=device) | |
self.message_function = get_message_function(module_type=message_function, | |
raw_message_dimension=raw_message_dimension, | |
message_dimension=message_dimension) | |
self.memory_updater = get_memory_updater(module_type=memory_updater_type, | |
memory=self.memory, | |
message_dimension=message_dimension, | |
memory_dimension=self.memory_dimension, | |
device=device) | |
self.embedding_module_type = embedding_module_type | |
self.embedding_module = get_embedding_module(module_type=embedding_module_type, | |
node_features=self.node_raw_features, | |
edge_features=self.edge_raw_features, | |
memory=self.memory, | |
neighbor_finder=self.neighbor_finder, | |
time_encoder=self.time_encoder, | |
n_layers=self.n_layers, | |
n_node_features=self.n_node_features, | |
n_edge_features=self.n_edge_features, | |
n_time_features=self.n_node_features, | |
embedding_dimension=self.embedding_dimension, | |
device=self.device, | |
n_heads=n_heads, dropout=dropout, | |
use_memory=use_memory, | |
n_neighbors=self.n_neighbors) | |
# MLP to compute probability on an edge given two node embeddings | |
self.affinity_score = MergeLayer(self.n_node_features, self.n_node_features, | |
self.n_node_features, | |
1) | |
def compute_temporal_embeddings(self, source_nodes, destination_nodes, negative_nodes, edge_times, | |
edge_idxs, n_neighbors=20): | |
""" | |
Compute temporal embeddings for sources, destinations, and negatively sampled destinations. | |
source_nodes [batch_size]: source ids. | |
:param destination_nodes [batch_size]: destination ids | |
:param negative_nodes [batch_size]: ids of negative sampled destination | |
:param edge_times [batch_size]: timestamp of interaction | |
:param edge_idxs [batch_size]: index of interaction | |
:param n_neighbors [scalar]: number of temporal neighbor to consider in each convolutional | |
layer | |
:return: Temporal embeddings for sources, destinations and negatives | |
""" | |
n_samples = len(source_nodes) | |
nodes = np.concatenate([source_nodes, destination_nodes, negative_nodes]) | |
positives = np.concatenate([source_nodes, destination_nodes]) | |
timestamps = np.concatenate([edge_times, edge_times, edge_times]) | |
memory = None | |
time_diffs = None | |
if self.use_memory: | |
if self.memory_update_at_start: | |
# Update memory for all nodes with messages stored in previous batches | |
memory, last_update = self.get_updated_memory(list(range(self.n_nodes)), | |
self.memory.messages) | |
else: | |
memory = self.memory.get_memory(list(range(self.n_nodes))) | |
last_update = self.memory.last_update | |
### Compute differences between the time the memory of a node was last updated, | |
### and the time for which we want to compute the embedding of a node | |
source_time_diffs = torch.LongTensor(edge_times).to(self.device) - last_update[ | |
source_nodes].long() | |
source_time_diffs = (source_time_diffs - self.mean_time_shift_src) / self.std_time_shift_src | |
destination_time_diffs = torch.LongTensor(edge_times).to(self.device) - last_update[ | |
destination_nodes].long() | |
destination_time_diffs = (destination_time_diffs - self.mean_time_shift_dst) / self.std_time_shift_dst | |
negative_time_diffs = torch.LongTensor(edge_times).to(self.device) - last_update[ | |
negative_nodes].long() | |
negative_time_diffs = (negative_time_diffs - self.mean_time_shift_dst) / self.std_time_shift_dst | |
time_diffs = torch.cat([source_time_diffs, destination_time_diffs, negative_time_diffs], | |
dim=0) | |
# Compute the embeddings using the embedding module | |
node_embedding = self.embedding_module.compute_embedding(memory=memory, | |
source_nodes=nodes, | |
timestamps=timestamps, | |
n_layers=self.n_layers, | |
n_neighbors=n_neighbors, | |
time_diffs=time_diffs) | |
source_node_embedding = node_embedding[:n_samples] | |
destination_node_embedding = node_embedding[n_samples: 2 * n_samples] | |
negative_node_embedding = node_embedding[2 * n_samples:] | |
if self.use_memory: | |
if self.memory_update_at_start: | |
# Persist the updates to the memory only for sources and destinations (since now we have | |
# new messages for them) | |
self.update_memory(positives, self.memory.messages) | |
assert torch.allclose(memory[positives], self.memory.get_memory(positives), atol=1e-5), \ | |
"Something wrong in how the memory was updated" | |
# Remove messages for the positives since we have already updated the memory using them | |
self.memory.clear_messages(positives) | |
unique_sources, source_id_to_messages = self.get_raw_messages(source_nodes, | |
source_node_embedding, | |
destination_nodes, | |
destination_node_embedding, | |
edge_times, edge_idxs) | |
unique_destinations, destination_id_to_messages = self.get_raw_messages(destination_nodes, | |
destination_node_embedding, | |
source_nodes, | |
source_node_embedding, | |
edge_times, edge_idxs) | |
if self.memory_update_at_start: | |
self.memory.store_raw_messages(unique_sources, source_id_to_messages) | |
self.memory.store_raw_messages(unique_destinations, destination_id_to_messages) | |
else: | |
self.update_memory(unique_sources, source_id_to_messages) | |
self.update_memory(unique_destinations, destination_id_to_messages) | |
if self.dyrep: | |
source_node_embedding = memory[source_nodes] | |
destination_node_embedding = memory[destination_nodes] | |
negative_node_embedding = memory[negative_nodes] | |
return source_node_embedding, destination_node_embedding, negative_node_embedding | |
def compute_edge_probabilities(self, source_nodes, destination_nodes, negative_nodes, edge_times, | |
edge_idxs, n_neighbors=20): | |
""" | |
Compute probabilities for edges between sources and destination and between sources and | |
negatives by first computing temporal embeddings using the TGN encoder and then feeding them | |
into the MLP decoder. | |
:param destination_nodes [batch_size]: destination ids | |
:param negative_nodes [batch_size]: ids of negative sampled destination | |
:param edge_times [batch_size]: timestamp of interaction | |
:param edge_idxs [batch_size]: index of interaction | |
:param n_neighbors [scalar]: number of temporal neighbor to consider in each convolutional | |
layer | |
:return: Probabilities for both the positive and negative edges | |
""" | |
n_samples = len(source_nodes) | |
source_node_embedding, destination_node_embedding, negative_node_embedding = self.compute_temporal_embeddings( | |
source_nodes, destination_nodes, negative_nodes, edge_times, edge_idxs, n_neighbors) | |
score = self.affinity_score(torch.cat([source_node_embedding, source_node_embedding], dim=0), | |
torch.cat([destination_node_embedding, | |
negative_node_embedding])).squeeze(dim=0) | |
pos_score = score[:n_samples] | |
neg_score = score[n_samples:] | |
return pos_score.sigmoid(), neg_score.sigmoid() | |
def update_memory(self, nodes, messages): | |
# Aggregate messages for the same nodes | |
unique_nodes, unique_messages, unique_timestamps = \ | |
self.message_aggregator.aggregate( | |
nodes, | |
messages) | |
if len(unique_nodes) > 0: | |
unique_messages = self.message_function.compute_message(unique_messages) | |
# Update the memory with the aggregated messages | |
self.memory_updater.update_memory(unique_nodes, unique_messages, | |
timestamps=unique_timestamps) | |
def get_updated_memory(self, nodes, messages): | |
# Aggregate messages for the same nodes | |
unique_nodes, unique_messages, unique_timestamps = \ | |
self.message_aggregator.aggregate( | |
nodes, | |
messages) | |
if len(unique_nodes) > 0: | |
unique_messages = self.message_function.compute_message(unique_messages) | |
updated_memory, updated_last_update = self.memory_updater.get_updated_memory(unique_nodes, | |
unique_messages, | |
timestamps=unique_timestamps) | |
return updated_memory, updated_last_update | |
def get_raw_messages(self, source_nodes, source_node_embedding, destination_nodes, | |
destination_node_embedding, edge_times, edge_idxs): | |
edge_times = torch.from_numpy(edge_times).float().to(self.device) | |
edge_features = self.edge_raw_features[edge_idxs] | |
source_memory = self.memory.get_memory(source_nodes) if not \ | |
self.use_source_embedding_in_message else source_node_embedding | |
destination_memory = self.memory.get_memory(destination_nodes) if \ | |
not self.use_destination_embedding_in_message else destination_node_embedding | |
source_time_delta = edge_times - self.memory.last_update[source_nodes] | |
source_time_delta_encoding = self.time_encoder(source_time_delta.unsqueeze(dim=1)).view(len( | |
source_nodes), -1) | |
source_message = torch.cat([source_memory, destination_memory, edge_features, | |
source_time_delta_encoding], | |
dim=1) | |
messages = defaultdict(list) | |
unique_sources = np.unique(source_nodes) | |
for i in range(len(source_nodes)): | |
messages[source_nodes[i]].append((source_message[i], edge_times[i])) | |
return unique_sources, messages | |
def set_neighbor_finder(self, neighbor_finder): | |
self.neighbor_finder = neighbor_finder | |
self.embedding_module.neighbor_finder = neighbor_finder | |