Spaces:
Runtime error
Runtime error
import torch | |
import os | |
import gradio as gr | |
from torch import autocast | |
from diffusers import StableDiffusionPipeline, DDIMScheduler | |
from IPython.display import display | |
from text_generation import Client, InferenceAPIClient | |
model_path = "ashishtanwer/shoe" | |
pipe = StableDiffusionPipeline.from_pretrained(model_path, safety_checker=None, torch_dtype=torch.float16).to("cuda") | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_xformers_memory_efficient_attention() | |
g_cuda = None | |
#@markdown Can set random seed here for reproducibility. | |
g_cuda = torch.Generator(device='cuda') | |
seed = 52362 #@param {type:"number"} | |
g_cuda.manual_seed(seed) | |
#@title Run for generating images. | |
prompt = "photo of zwx dog in a bucket" #@param {type:"string"} | |
negative_prompt = "" #@param {type:"string"} | |
num_samples = 4 #@param {type:"number"} | |
guidance_scale = 7.5 #@param {type:"number"} | |
num_inference_steps = 24 #@param {type:"number"} | |
height = 512 #@param {type:"number"} | |
width = 512 #@param {type:"number"} | |
with autocast("cuda"), torch.inference_mode(): | |
images = pipe( | |
prompt, | |
height=height, | |
width=width, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_samples, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=g_cuda | |
).images | |
for img in images: | |
display(img) | |
def inference(prompt, negative_prompt, num_samples, height=512, width=512, num_inference_steps=50, guidance_scale=7.5): | |
with torch.autocast("cuda"), torch.inference_mode(): | |
return pipe( | |
prompt, height=int(height), width=int(width), | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=int(num_samples), | |
num_inference_steps=int(num_inference_steps), guidance_scale=guidance_scale, | |
generator=g_cuda | |
).images | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", value="photo of zwx dog in a bucket") | |
negative_prompt = gr.Textbox(label="Negative Prompt", value="") | |
run = gr.Button(value="Generate") | |
with gr.Row(): | |
num_samples = gr.Number(label="Number of Samples", value=4) | |
guidance_scale = gr.Number(label="Guidance Scale", value=7.5) | |
with gr.Row(): | |
height = gr.Number(label="Height", value=512) | |
width = gr.Number(label="Width", value=512) | |
num_inference_steps = gr.Slider(label="Steps", value=24) | |
with gr.Column(): | |
gallery = gr.Gallery() | |
run.click(inference, inputs=[prompt, negative_prompt, num_samples, height, width, num_inference_steps, guidance_scale], outputs=gallery) | |
demo.launch(debug=True) |