|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.modeling_utils import ModelMixin |
|
from diffusers.utils import BaseOutput |
|
from diffusers.models.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block, ResnetBlock2D |
|
from diffusers.models.vae import DecoderOutput, Encoder, AutoencoderKLOutput, DiagonalGaussianDistribution |
|
|
|
|
|
def slice_h(x, num_slices): |
|
|
|
|
|
|
|
size = (x.shape[2] + num_slices - 1) // num_slices |
|
sliced = [] |
|
for i in range(num_slices): |
|
if i == 0: |
|
sliced.append(x[:, :, : size + 1, :]) |
|
else: |
|
end = size * (i + 1) + 1 |
|
if x.shape[2] - end < 3: |
|
end = x.shape[2] |
|
sliced.append(x[:, :, size * i - 1 : end, :]) |
|
if end >= x.shape[2]: |
|
break |
|
return sliced |
|
|
|
|
|
def cat_h(sliced): |
|
|
|
cat = [] |
|
for i, x in enumerate(sliced): |
|
if i == 0: |
|
cat.append(x[:, :, :-1, :]) |
|
elif i == len(sliced) - 1: |
|
cat.append(x[:, :, 1:, :]) |
|
else: |
|
cat.append(x[:, :, 1:-1, :]) |
|
del x |
|
x = torch.cat(cat, dim=2) |
|
return x |
|
|
|
|
|
def resblock_forward(_self, num_slices, input_tensor, temb): |
|
assert _self.upsample is None and _self.downsample is None |
|
assert _self.norm1.num_groups == _self.norm2.num_groups |
|
assert temb is None |
|
|
|
|
|
org_device = input_tensor.device |
|
cpu_device = torch.device("cpu") |
|
_self.norm1.to(cpu_device) |
|
_self.norm2.to(cpu_device) |
|
|
|
|
|
org_dtype = input_tensor.dtype |
|
if org_dtype == torch.float16: |
|
_self.norm1.to(torch.float32) |
|
_self.norm2.to(torch.float32) |
|
|
|
|
|
input_tensor = input_tensor.to(cpu_device) |
|
hidden_states = input_tensor |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if org_dtype == torch.float16: |
|
hidden_states = hidden_states.to(torch.float32) |
|
hidden_states = _self.norm1(hidden_states) |
|
if org_dtype == torch.float16: |
|
hidden_states = hidden_states.to(torch.float16) |
|
|
|
sliced = slice_h(hidden_states, num_slices) |
|
del hidden_states |
|
|
|
for i in range(len(sliced)): |
|
x = sliced[i] |
|
sliced[i] = None |
|
|
|
|
|
x = x.to(org_device) |
|
x = _self.nonlinearity(x) |
|
x = _self.conv1(x) |
|
x = x.to(cpu_device) |
|
sliced[i] = x |
|
del x |
|
|
|
hidden_states = cat_h(sliced) |
|
del sliced |
|
|
|
if org_dtype == torch.float16: |
|
hidden_states = hidden_states.to(torch.float32) |
|
hidden_states = _self.norm2(hidden_states) |
|
if org_dtype == torch.float16: |
|
hidden_states = hidden_states.to(torch.float16) |
|
|
|
sliced = slice_h(hidden_states, num_slices) |
|
del hidden_states |
|
|
|
for i in range(len(sliced)): |
|
x = sliced[i] |
|
sliced[i] = None |
|
|
|
x = x.to(org_device) |
|
x = _self.nonlinearity(x) |
|
x = _self.dropout(x) |
|
x = _self.conv2(x) |
|
x = x.to(cpu_device) |
|
sliced[i] = x |
|
del x |
|
|
|
hidden_states = cat_h(sliced) |
|
del sliced |
|
|
|
|
|
if _self.conv_shortcut is not None: |
|
sliced = list(torch.chunk(input_tensor, num_slices, dim=2)) |
|
del input_tensor |
|
|
|
for i in range(len(sliced)): |
|
x = sliced[i] |
|
sliced[i] = None |
|
|
|
x = x.to(org_device) |
|
x = _self.conv_shortcut(x) |
|
x = x.to(cpu_device) |
|
sliced[i] = x |
|
del x |
|
|
|
input_tensor = torch.cat(sliced, dim=2) |
|
del sliced |
|
|
|
output_tensor = (input_tensor + hidden_states) / _self.output_scale_factor |
|
|
|
output_tensor = output_tensor.to(org_device) |
|
return output_tensor |
|
|
|
|
|
class SlicingEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=("DownEncoderBlock2D",), |
|
block_out_channels=(64,), |
|
layers_per_block=2, |
|
norm_num_groups=32, |
|
act_fn="silu", |
|
double_z=True, |
|
num_slices=2, |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1) |
|
|
|
self.mid_block = None |
|
self.down_blocks = nn.ModuleList([]) |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=self.layers_per_block, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
add_downsample=not is_final_block, |
|
resnet_eps=1e-6, |
|
downsample_padding=0, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
attn_num_head_channels=None, |
|
temb_channels=None, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
self.mid_block = UNetMidBlock2D( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default", |
|
attn_num_head_channels=None, |
|
resnet_groups=norm_num_groups, |
|
temb_channels=None, |
|
) |
|
self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True) |
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) |
|
self.conv_act = nn.SiLU() |
|
|
|
conv_out_channels = 2 * out_channels if double_z else out_channels |
|
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) |
|
|
|
|
|
def wrapper(func, module, num_slices): |
|
def forward(*args, **kwargs): |
|
return func(module, num_slices, *args, **kwargs) |
|
|
|
return forward |
|
|
|
self.num_slices = num_slices |
|
div = num_slices / (2 ** (len(self.down_blocks) - 1)) |
|
|
|
if div >= 2: |
|
div = int(div) |
|
for resnet in self.mid_block.resnets: |
|
resnet.forward = wrapper(resblock_forward, resnet, div) |
|
|
|
|
|
for i, down_block in enumerate(self.down_blocks[::-1]): |
|
if div >= 2: |
|
div = int(div) |
|
|
|
for resnet in down_block.resnets: |
|
resnet.forward = wrapper(resblock_forward, resnet, div) |
|
if down_block.downsamplers is not None: |
|
|
|
for downsample in down_block.downsamplers: |
|
downsample.forward = wrapper(self.downsample_forward, downsample, div * 2) |
|
div *= 2 |
|
|
|
def forward(self, x): |
|
sample = x |
|
del x |
|
|
|
org_device = sample.device |
|
cpu_device = torch.device("cpu") |
|
|
|
|
|
sample = sample.to(cpu_device) |
|
sliced = slice_h(sample, self.num_slices) |
|
del sample |
|
|
|
for i in range(len(sliced)): |
|
x = sliced[i] |
|
sliced[i] = None |
|
|
|
x = x.to(org_device) |
|
x = self.conv_in(x) |
|
x = x.to(cpu_device) |
|
sliced[i] = x |
|
del x |
|
|
|
sample = cat_h(sliced) |
|
del sliced |
|
|
|
sample = sample.to(org_device) |
|
|
|
|
|
for down_block in self.down_blocks: |
|
sample = down_block(sample) |
|
|
|
|
|
sample = self.mid_block(sample) |
|
|
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
return sample |
|
|
|
def downsample_forward(self, _self, num_slices, hidden_states): |
|
assert hidden_states.shape[1] == _self.channels |
|
assert _self.use_conv and _self.padding == 0 |
|
print("downsample forward", num_slices, hidden_states.shape) |
|
|
|
org_device = hidden_states.device |
|
cpu_device = torch.device("cpu") |
|
|
|
hidden_states = hidden_states.to(cpu_device) |
|
pad = (0, 1, 0, 1) |
|
hidden_states = torch.nn.functional.pad(hidden_states, pad, mode="constant", value=0) |
|
|
|
|
|
|
|
|
|
size = (hidden_states.shape[2] + num_slices - 1) // num_slices |
|
size = size + 1 if size % 2 == 1 else size |
|
|
|
sliced = [] |
|
for i in range(num_slices): |
|
if i == 0: |
|
sliced.append(hidden_states[:, :, : size + 1, :]) |
|
else: |
|
end = size * (i + 1) + 1 |
|
if hidden_states.shape[2] - end < 4: |
|
end = hidden_states.shape[2] |
|
sliced.append(hidden_states[:, :, size * i - 1 : end, :]) |
|
if end >= hidden_states.shape[2]: |
|
break |
|
del hidden_states |
|
|
|
for i in range(len(sliced)): |
|
x = sliced[i] |
|
sliced[i] = None |
|
|
|
x = x.to(org_device) |
|
x = _self.conv(x) |
|
x = x.to(cpu_device) |
|
|
|
|
|
if i == 0: |
|
hidden_states = x |
|
else: |
|
hidden_states = torch.cat([hidden_states, x], dim=2) |
|
|
|
hidden_states = hidden_states.to(org_device) |
|
|
|
return hidden_states |
|
|
|
|
|
class SlicingDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels=3, |
|
out_channels=3, |
|
up_block_types=("UpDecoderBlock2D",), |
|
block_out_channels=(64,), |
|
layers_per_block=2, |
|
norm_num_groups=32, |
|
act_fn="silu", |
|
num_slices=2, |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) |
|
|
|
self.mid_block = None |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
|
|
self.mid_block = UNetMidBlock2D( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default", |
|
attn_num_head_channels=None, |
|
resnet_groups=norm_num_groups, |
|
temb_channels=None, |
|
) |
|
self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True) |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=self.layers_per_block + 1, |
|
in_channels=prev_output_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=None, |
|
add_upsample=not is_final_block, |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
attn_num_head_channels=None, |
|
temb_channels=None, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) |
|
self.conv_act = nn.SiLU() |
|
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) |
|
|
|
|
|
def wrapper(func, module, num_slices): |
|
def forward(*args, **kwargs): |
|
return func(module, num_slices, *args, **kwargs) |
|
|
|
return forward |
|
|
|
self.num_slices = num_slices |
|
div = num_slices / (2 ** (len(self.up_blocks) - 1)) |
|
print(f"initial divisor: {div}") |
|
if div >= 2: |
|
div = int(div) |
|
for resnet in self.mid_block.resnets: |
|
resnet.forward = wrapper(resblock_forward, resnet, div) |
|
|
|
|
|
for i, up_block in enumerate(self.up_blocks): |
|
if div >= 2: |
|
div = int(div) |
|
|
|
for resnet in up_block.resnets: |
|
resnet.forward = wrapper(resblock_forward, resnet, div) |
|
if up_block.upsamplers is not None: |
|
|
|
for upsample in up_block.upsamplers: |
|
upsample.forward = wrapper(self.upsample_forward, upsample, div * 2) |
|
div *= 2 |
|
|
|
def forward(self, z): |
|
sample = z |
|
del z |
|
sample = self.conv_in(sample) |
|
|
|
|
|
sample = self.mid_block(sample) |
|
|
|
|
|
for i, up_block in enumerate(self.up_blocks): |
|
sample = up_block(sample) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
|
|
|
|
|
|
org_device = sample.device |
|
cpu_device = torch.device("cpu") |
|
sample = sample.to(cpu_device) |
|
|
|
sliced = slice_h(sample, self.num_slices) |
|
del sample |
|
for i in range(len(sliced)): |
|
x = sliced[i] |
|
sliced[i] = None |
|
|
|
x = x.to(org_device) |
|
x = self.conv_out(x) |
|
x = x.to(cpu_device) |
|
sliced[i] = x |
|
sample = cat_h(sliced) |
|
del sliced |
|
|
|
sample = sample.to(org_device) |
|
return sample |
|
|
|
def upsample_forward(self, _self, num_slices, hidden_states, output_size=None): |
|
assert hidden_states.shape[1] == _self.channels |
|
assert _self.use_conv_transpose == False and _self.use_conv |
|
|
|
org_dtype = hidden_states.dtype |
|
org_device = hidden_states.device |
|
cpu_device = torch.device("cpu") |
|
|
|
hidden_states = hidden_states.to(cpu_device) |
|
sliced = slice_h(hidden_states, num_slices) |
|
del hidden_states |
|
|
|
for i in range(len(sliced)): |
|
x = sliced[i] |
|
sliced[i] = None |
|
|
|
x = x.to(org_device) |
|
|
|
|
|
|
|
|
|
|
|
if org_dtype == torch.bfloat16: |
|
x = x.to(torch.float32) |
|
|
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") |
|
|
|
if org_dtype == torch.bfloat16: |
|
x = x.to(org_dtype) |
|
|
|
x = _self.conv(x) |
|
|
|
|
|
if i == 0: |
|
x = x[:, :, :-2, :] |
|
elif i == num_slices - 1: |
|
x = x[:, :, 2:, :] |
|
else: |
|
x = x[:, :, 2:-2, :] |
|
|
|
x = x.to(cpu_device) |
|
sliced[i] = x |
|
del x |
|
|
|
hidden_states = torch.cat(sliced, dim=2) |
|
|
|
del sliced |
|
|
|
hidden_states = hidden_states.to(org_device) |
|
return hidden_states |
|
|
|
|
|
class SlicingAutoencoderKL(ModelMixin, ConfigMixin): |
|
r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma |
|
and Max Welling. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library |
|
implements for all the model (such as downloading or saving, etc.) |
|
|
|
Parameters: |
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. |
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to : |
|
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to : |
|
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to : |
|
obj:`(64,)`): Tuple of block output channels. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
latent_channels (`int`, *optional*, defaults to `4`): Number of channels in the latent space. |
|
sample_size (`int`, *optional*, defaults to `32`): TODO |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str] = ("DownEncoderBlock2D",), |
|
up_block_types: Tuple[str] = ("UpDecoderBlock2D",), |
|
block_out_channels: Tuple[int] = (64,), |
|
layers_per_block: int = 1, |
|
act_fn: str = "silu", |
|
latent_channels: int = 4, |
|
norm_num_groups: int = 32, |
|
sample_size: int = 32, |
|
num_slices: int = 16, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.encoder = SlicingEncoder( |
|
in_channels=in_channels, |
|
out_channels=latent_channels, |
|
down_block_types=down_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
act_fn=act_fn, |
|
norm_num_groups=norm_num_groups, |
|
double_z=True, |
|
num_slices=num_slices, |
|
) |
|
|
|
|
|
self.decoder = SlicingDecoder( |
|
in_channels=latent_channels, |
|
out_channels=out_channels, |
|
up_block_types=up_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
norm_num_groups=norm_num_groups, |
|
act_fn=act_fn, |
|
num_slices=num_slices, |
|
) |
|
|
|
self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) |
|
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) |
|
self.use_slicing = False |
|
|
|
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput: |
|
h = self.encoder(x) |
|
moments = self.quant_conv(h) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: |
|
z = self.post_quant_conv(z) |
|
dec = self.decoder(z) |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
|
|
def enable_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. |
|
|
|
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several |
|
steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.use_slicing = True |
|
|
|
def disable_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_slicing` was previously invoked, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.use_slicing = False |
|
|
|
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: |
|
if self.use_slicing and z.shape[0] > 1: |
|
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] |
|
decoded = torch.cat(decoded_slices) |
|
else: |
|
decoded = self._decode(z).sample |
|
|
|
if not return_dict: |
|
return (decoded,) |
|
|
|
return DecoderOutput(sample=decoded) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
sample_posterior: bool = False, |
|
return_dict: bool = True, |
|
generator: Optional[torch.Generator] = None, |
|
) -> Union[DecoderOutput, torch.FloatTensor]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): Input sample. |
|
sample_posterior (`bool`, *optional*, defaults to `False`): |
|
Whether to sample from the posterior. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. |
|
""" |
|
x = sample |
|
posterior = self.encode(x).latent_dist |
|
if sample_posterior: |
|
z = posterior.sample(generator=generator) |
|
else: |
|
z = posterior.mode() |
|
dec = self.decode(z).sample |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|