Spaces:
Runtime error
Runtime error
File size: 10,050 Bytes
660acc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
import argparse
import logging
import os
from glob import glob
import numpy as np
import torch
from PIL import Image
from tqdm.auto import tqdm
from marigold import MarigoldPipeline
EXTENSION_LIST = [".jpg", ".jpeg", ".png"]
if "__main__" == __name__:
logging.basicConfig(level=logging.INFO)
# -------------------- Arguments --------------------
parser = argparse.ArgumentParser(
description="Run single-image depth estimation using Marigold."
)
parser.add_argument(
"--checkpoint",
type=str,
default="prs-eth/marigold-lcm-v1-0",
help="Checkpoint path or hub name.",
)
parser.add_argument(
"--input_rgb_dir",
type=str,
required=True,
help="Path to the input image folder.",
)
parser.add_argument(
"--output_dir", type=str, required=True, help="Output directory."
)
# inference setting
parser.add_argument(
"--denoise_steps",
type=int,
default=None,
help="Diffusion denoising steps, more steps results in higher accuracy but slower inference speed. For the original (DDIM) version, it's recommended to use 10-50 steps, while for LCM 1-4 steps.",
)
parser.add_argument(
"--ensemble_size",
type=int,
default=5,
help="Number of predictions to be ensembled, more inference gives better results but runs slower.",
)
parser.add_argument(
"--half_precision",
"--fp16",
action="store_true",
help="Run with half-precision (16-bit float), might lead to suboptimal result.",
)
# resolution setting
parser.add_argument(
"--processing_res",
type=int,
default=None,
help="Maximum resolution of processing. 0 for using input image resolution. Default: 768.",
)
parser.add_argument(
"--output_processing_res",
action="store_true",
help="When input is resized, out put depth at resized operating resolution. Default: False.",
)
parser.add_argument(
"--resample_method",
choices=["bilinear", "bicubic", "nearest"],
default="bilinear",
help="Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`. Default: `bilinear`",
)
# depth map colormap
parser.add_argument(
"--color_map",
type=str,
default="Spectral",
help="Colormap used to render depth predictions.",
)
# other settings
parser.add_argument(
"--seed",
type=int,
default=None,
help="Reproducibility seed. Set to `None` for unseeded inference.",
)
parser.add_argument(
"--batch_size",
type=int,
default=0,
help="Inference batch size. Default: 0 (will be set automatically).",
)
parser.add_argument(
"--apple_silicon",
action="store_true",
help="Flag of running on Apple Silicon.",
)
args = parser.parse_args()
checkpoint_path = args.checkpoint
input_rgb_dir = args.input_rgb_dir
output_dir = args.output_dir
denoise_steps = args.denoise_steps
ensemble_size = args.ensemble_size
if ensemble_size > 15:
logging.warning("Running with large ensemble size will be slow.")
half_precision = args.half_precision
processing_res = args.processing_res
match_input_res = not args.output_processing_res
if 0 == processing_res and match_input_res is False:
logging.warning(
"Processing at native resolution without resizing output might NOT lead to exactly the same resolution, due to the padding and pooling properties of conv layers."
)
resample_method = args.resample_method
color_map = args.color_map
seed = args.seed
batch_size = args.batch_size
apple_silicon = args.apple_silicon
if apple_silicon and 0 == batch_size:
batch_size = 1 # set default batchsize
# -------------------- Preparation --------------------
# Output directories
output_dir_color = os.path.join(output_dir, "depth_colored")
output_dir_tif = os.path.join(output_dir, "depth_bw")
output_dir_npy = os.path.join(output_dir, "depth_npy")
os.makedirs(output_dir, exist_ok=True)
os.makedirs(output_dir_color, exist_ok=True)
os.makedirs(output_dir_tif, exist_ok=True)
os.makedirs(output_dir_npy, exist_ok=True)
logging.info(f"output dir = {output_dir}")
# -------------------- Device --------------------
if apple_silicon:
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
device = torch.device("mps:0")
else:
device = torch.device("cpu")
logging.warning("MPS is not available. Running on CPU will be slow.")
else:
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
logging.warning("CUDA is not available. Running on CPU will be slow.")
logging.info(f"device = {device}")
# -------------------- Data --------------------
rgb_filename_list = glob(os.path.join(input_rgb_dir, "*"))
rgb_filename_list = [
f for f in rgb_filename_list if os.path.splitext(f)[1].lower() in EXTENSION_LIST
]
rgb_filename_list = sorted(rgb_filename_list)
n_images = len(rgb_filename_list)
if n_images > 0:
logging.info(f"Found {n_images} images")
else:
logging.error(f"No image found in '{input_rgb_dir}'")
exit(1)
# -------------------- Model --------------------
if half_precision:
dtype = torch.float16
variant = "fp16"
logging.info(
f"Running with half precision ({dtype}), might lead to suboptimal result."
)
else:
dtype = torch.float32
variant = None
pipe: MarigoldPipeline = MarigoldPipeline.from_pretrained(
checkpoint_path, variant=variant, torch_dtype=dtype
)
try:
pipe.enable_xformers_memory_efficient_attention()
except ImportError:
pass # run without xformers
pipe = pipe.to(device)
logging.info(
f"scale_invariant: {pipe.scale_invariant}, shift_invariant: {pipe.shift_invariant}"
)
# Print out config
logging.info(
f"Inference settings: checkpoint = `{checkpoint_path}`, "
f"with denoise_steps = {denoise_steps or pipe.default_denoising_steps}, "
f"ensemble_size = {ensemble_size}, "
f"processing resolution = {processing_res or pipe.default_processing_resolution}, "
f"seed = {seed}; "
f"color_map = {color_map}."
)
# -------------------- Inference and saving --------------------
with torch.no_grad():
os.makedirs(output_dir, exist_ok=True)
for rgb_path in tqdm(rgb_filename_list, desc="Estimating depth", leave=True):
# Read input image
input_image = Image.open(rgb_path)
# Random number generator
if seed is None:
generator = None
else:
generator = torch.Generator(device=device)
generator.manual_seed(seed)
# Predict depth
pipe_out = pipe(
input_image,
denoising_steps=denoise_steps,
ensemble_size=ensemble_size,
processing_res=processing_res,
match_input_res=match_input_res,
batch_size=batch_size,
color_map=color_map,
show_progress_bar=True,
resample_method=resample_method,
generator=generator,
)
depth_pred: np.ndarray = pipe_out.depth_np
depth_colored: Image.Image = pipe_out.depth_colored
# Save as npy
rgb_name_base = os.path.splitext(os.path.basename(rgb_path))[0]
pred_name_base = rgb_name_base + "_pred"
npy_save_path = os.path.join(output_dir_npy, f"{pred_name_base}.npy")
if os.path.exists(npy_save_path):
logging.warning(f"Existing file: '{npy_save_path}' will be overwritten")
np.save(npy_save_path, depth_pred)
# Save as 16-bit uint png
depth_to_save = (depth_pred * 65535.0).astype(np.uint16)
png_save_path = os.path.join(output_dir_tif, f"{pred_name_base}.png")
if os.path.exists(png_save_path):
logging.warning(f"Existing file: '{png_save_path}' will be overwritten")
Image.fromarray(depth_to_save).save(png_save_path, mode="I;16")
# Colorize
colored_save_path = os.path.join(
output_dir_color, f"{pred_name_base}_colored.png"
)
if os.path.exists(colored_save_path):
logging.warning(
f"Existing file: '{colored_save_path}' will be overwritten"
)
depth_colored.save(colored_save_path)
|